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ABSTRACT 

A separation kernel can be used as the foundation of a high assurance system that 

enforces mandatory security policies. The contexts in which such separation kernels 

might be used include support for a distributed trusted path, high assurance routing, and 

for a multilevel secure mobile device that supports an extraordinary access partition for 

access to sensitive data during a crisis. Separation kernel requirements call for an audit 

subsystem that helps to enforce accountability policy by allowing administrators to detect 

unauthorized activities from the logs collected. The Least Privilege Separation Kernel 

(LPSK) being implemented for the Trusted Computing Exemplar (TCX) project did not 

have an audit subsystem.  

This thesis describes the design and implementation of an audit subsystem for the 

LPSK. Requirements were gathered based on an existing specification and protection 

profile. A variable-length token-based audit log format was designed to allow flexibility 

in recording different types of events. Interfaces to other LPSK modules and non-LPSK 

modules were designed and a prototype was developed. Testing results show that the 

prototype supports the LPSK audit requirements. Hence, this work demonstrates the 

feasibility of implementing the LPSK audit subsystem based on the proposed design. 
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I. INTRODUCTION  

A. MOTIVATION 

To reduce software, hardware and management costs, organizations might choose 

to use a single system to handle multiple types of information, which could include 

information of different sensitivity levels. In such as system, the assurance that the 

security policy is properly enforced to protect against unauthorized information flow is of 

utmost importance.  

In certain scenarios, timely availability of information could be critical in certain 

circumstances, such as during emergencies. For example, the first responders might need 

access to sensitive information not normally available to them. A high assurance 

multilevel secure device such as the E-device [1] proposed by the Naval Postgraduate 

School, supports this kind of operation by allowing the users to switch a platform to an 

emergency mode for the duration of the crisis, which gives them the necessary access. 

The Naval Postgraduate School Trusted Computing Exemplar (TCX) project [2] 

is developing a high assurance platform that that could provide solutions to the use cases 

described above. The TCX objectives include a high assurance reference implementation 

that includes a Least Privilege Separation Kernel (LPSK). The LPSK isolates the 

resources into different partitions and has granular control over the configuration of 

information flow between the partitions.  

The LPSK is built to comply with the U.S. Government Protection Profile for 

Separation Kernels in Environments Requiring High Robustness (SKPP) [3]. The SKPP 

is a requirements document that contains the security objectives, functional requirements 

and assurance requirements for a separation kernel. The SKPP mandates that any 

separation kernel, including the LPSK, that seeks certification against it must minimally 

fulfill the audit requirements stated in the protection profile. Separation kernels might 

also include additional audit requirements depending on their specific implementations.  

National Institute of Standards and Technology (NIST) Special Publication 800-

53 [4] describes the recommended security controls for federal information systems and 
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organizations. It mandates the implementation of audit and accountability that can 

uniquely trace actions back to users. The proposed E-device, for example, must provide a 

mechanism to determine whether the first responders are gaining access to data beyond 

what is needed to accomplish their missions.  An effective audit subsystem could 

facilitate an after action review by rebuilding the entire chain of events that occurred 

during the crisis.  

B. PURPOSE OF STUDY 

The purpose of this thesis was to design and implement a prototype of an audit 

subsystem for the LPSK. The requirements were gathered from the LPSK functional 

specifications [5] and the SKPP. The objective of the design was to seek answers to the 

following questions: 

 What factors must be considered when designing an audit subsystem for a 

separation kernel? 

 What information should the audit records contain and in what format? 

 What interfaces are needed for the audit subsystem to interact with other 

components? 

 Can an audit subsystem constructed as part of the LPSK prototype meet the 

requirements of the LPSK functional specifications and SKPP? 

An audit subsystem prototype of was developed to demonstrate the feasibility of 

the design.  A test plan was devised and the prototype was tested to ensure it behaves 

according to specifications. 

C. ORGANIZATION OF PAPER 

The thesis is organized into six chapters. Each chapter is systematically organized 

to provide an in-depth discussion of the different aspects of the thesis. 

 Chapter I introduces this thesis. The motivation and purpose of study were 

discussed.  
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 Chapter II provides the background information on separation kernels, the 

Principal of Least Privilege, the Common Criteria and specifically the SKPP, 

the TCX project, the purpose of auditing, log management architectures and 

audit record standards.  

 Chapter III describes the requirements for the LPSK audit subsystem. It 

includes discussions of audit record event selection, automatic response, data 

generation and data review. It also provides a list of events to be audited. 

 Chapter IV describes the design and implementation of the LPSK audit 

subsystem. It starts with  a presentation of a high level design to introduce the 

various components involved in the audit subsystem. This is followed by 

detailed discussions of audit record formats and how the components interface 

with one another. This chapter ends with a description of the implementation 

of the audit subsystem prototype. 

 Chapter V describes how the LPSK audit subsystem prototype was tested 

according to developmental and acceptance testing plans. 

 Chapter VI provides a summary of the work that has been done for this thesis 

and a discussion of the challenges faced. Related work is also discussed to 

compare the different approaches used in similar projects. This is followed by 

a conclusion of the thesis and suggestions for future work. 

This chapter introduced the thesis by describing the motivation and purpose of 

study, and gave an overview of the organization of the paper. Focus now changes to 

background material needed to appreciate the work that follows. 
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II. BACKGROUND  

This chapter provides background information regarding separation kernels and 

the necessary audit mechanisms to support them. The concept of a Least Privilege 

Separation Kernel will be introduced, followed by a discussion of the purposes and 

functions of an audit mechanism.   

A. LEAST PRIVILEGE SEPARATION KERNEL 

This section discusses the importance of a high assurance system and the benefits 

of constructing such a system using a Least Privilege Separation Kernel. 

1.  Separation Kernel 

While Commercial off-the-Shelf  (COTS) systems may be sufficient in handling 

the security requirements for general tasks in the private and public sectors, they are not 

designed to protect highly sensitive information. COTS systems are usually not easily 

verifiable, nor are they able to enforce multilevel security policies and address the 

problem of subversion. This is where high assurance trusted computing systems are 

needed. 

One way to design a high assurance system is to put a security kernel at its core. 

A security kernel consists of core security components that will mediate all data flow and 

accesses to resources. It is made up of hardware and software mechanisms that fall within 

the Trusted Computing Base (TCB), which is the totality of all protection mechanism 

responsible for enforcing a security policy. In a security kernel, an internal security label 

is bound to each exported resource and accesses to the resources are mediated according 

to predefined security policies based on these labels. Efforts are usually made to keep the 

security kernel  small enough to be formally verifiable.   

Despite these efforts, some argue that security kernels are too large. Another 

architecture is a separation kernel proposed by Rushby [6].  The idea behind a separation 

kernel is to provide a single system that emulates a number of distributed systems in 

which the components are physically separated into different isolated blocks. Information 
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flow is described at the block level. The kernel can export the resources to separate 

blocks such that the activities in one block will not be visible to other blocks. An 

exception might be when information flow between the two blocks is explicitly allowed 

in the configuration. Isolation of blocks is usually accomplished by virtualization of 

shared resources and implementation of security mechanism controls to enforce policies. 

Security is achieved through this isolation and through the mediation of trusted functions. 

2. Principle of Least Privileged on Separation Kernel 

In a separation kernel, if information flow is explicitly allowed between two 

blocks, all subjects in one block can see all the activities in the other block, even if the 

original intention is to only allow a small subset of the subjects to access a small subset 

of resources in the other block. The problem of describing information flow at the block 

level is that the policy configuration is not granular enough to handle individual subject-

to-resource controls. This limitation means that the information flow configuration in a 

separation kernel is more likely to violate the Principle of Least Privilege [7]. The 

Principle of Least Privilege states that every subject must be able to access only such 

resources that are necessary for its legitimate purpose and nothing more than that. It is 

one of the major design principles that all secure systems should adhere to.  

The Center for Information Systems Security Studies and Research (CISR) at the 

Naval Postgraduate School (NPS) is designing and building a separation kernel that will 

support the Principle of Least Privilege; it is referred to as the Least Privilege Separation 

Kernel (LPSK) [2]. The NPS LPSK extends the concept of separation kernels and adds 

mechanisms to allow more granular control. In addition to a policy that describes data 

flow between blocks, the LPSK mediates access based on another overriding subject-

resource flow matrix. A subject is only allowed access to a resource if both the inter-

block data flow policy and the subject-resource flow is allowed. The Principle of Least 

Privilege is fulfilled by granting the least set of privilege to resources in the LPSK. 

3. Common Criteria and Protection Profiles 

A high assurance separation kernel must demonstrably meet its security objectives 

through a thorough and comprehensive evaluation process.  The Common Criteria (CC) 
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[8] provides a framework in which systems can be evaluated to determine whether they 

have met a required level of security functionality and assurance. The CC has been  

jointly developed and recognized as a security standard by many countries. When a 

system is being developed with the intent of meeting CC criteria, the developers target a 

specific Evaluation Assurance Level (EAL). The EAL ranges from EAL1, which is the 

lowest level of assurance in the CC framework, to EAL7.  

The CC paradigm uses protection profiles as high level requirements documents. 

A protection profile contains the security objectives, functional requirements and 

assurance requirements for a particular category of system. The target system will be 

evaluated using the requirements stated in the protection profile. The U.S. Government 

Protection Profile for Separation Kernels in Environments Requiring High Robustness 

(SKPP) [3] contains such requirements for evaluating highly trustworthy separation 

kernels.  

3. Trusted Computing Exemplar (TCX) Project 

Even though the benefits of a high assurance Trusted Computing system are 

obvious, there has been very little work done on such systems in recent years. The 

Trusted Computing Exemplar (TCX) project [3] seeks to fill this gap by providing a 

worked example of a highly trusted computing system. The four main activities of the 

TCX project are: 

 Creation of a prototype framework for rapid high assurance 
system development 

 Development of a reference implementation trusted 
computing component 

 Evaluation of the component for high assurance 

 Open dissemination of deliverables related to the first three 
activities 

A LPSK is being developed as part of the development of a reference 

implementation for the TCX project. This paper attempts to design and implement an 

audit subsystem based on the foundation of the TCX’s LPSK. 
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B. AUDIT OVERVIEW 

Audit is an integral part of any secure system. It generally refers to the 

mechanisms and process of recording, examining and reviewing of security-related 

operations to support organizational requirements for accountability. A document 

produced by the United States National Institute of Standards and Technology (NIST) 

that describes minimum security requirements for information systems [9] dictates that 

organizations must “create, protect, and retain information system audit records to the 

extent needed to enable the monitoring, analysis, investigation, and reporting of unlawful, 

unauthorized, or inappropriate information system activity”. It also requires organizations 

to “ensure that the actions of individual information system users can be uniquely traced 

to those users so they can be held accountable for their actions.” The purpose of audit 

actually extends far beyond ensuring accountability. This section  summarizes some of 

the objectives of a good audit subsystem  

1. Purpose of Audit 

A good logging mechanism will facilitate the review of access patterns to 

individual objects [10]. An audit system must be able to facilitate the discovery of 

attempts by intruders to bypass the protection mechanisms, such as failed login attempts. 

This can be accomplished by regular inspections of the audit log by a security officer. 

The audit system can also act as a building block for other security components such as 

an intrusion detection system, which performs near real-time automated analysis of audit 

information to detect malicious attacks. 

To protect against insider threats, the audit mechanism must also allow for the 

discovery of usages patterns that have violated or could be leading to a violation of an 

organization’s security policies [10]. It can also be used to monitor attempts to exploit 

covert channels. To provide these services, the audit mechanism must be able to track all 

users’ operations and the privileges they are assuming. 

A good audit system can also act as a deterrent to potential attackers. Such 

individuals are less likely to carry out any malicious acts on the system if they know that 

 



 9

all their activities will be detected and recorded by the audit system. To the system 

owners, a good audit system also acts as a form of assurance that potential malicious 

activity will be discovered. 

Besides contributing to security, a good audit mechanism also makes it easier for 

system developers and operators to troubleshoot the system in the event of system 

malfunction [11].  An administrator can review the audit logs to piece together 

information that can help him reconstruct the sequence of events, to identify what went 

wrong, and then potentially what needs to be corrected 

2. Log Management Architecture 

To be able to accomplish the goals of the audit subsystem, an effective way of 

generating, collecting and reviewing logs must be in place. A log management 

architecture addresses these issues by looking at ways to organize the various 

components to process and store audit information. A typical log management 

architecture usually consists of the following 3 tiers [12]: 

 1st Tier: Log Generation. Audit services run in the individual host/device to 

generate audit records. Audit mechanisms are usually part of the TCB of the 

system to ensure that they are tamper-proof, always invoked and verifiable. 

The events to be audited may be configurable to allow granular control over 

the amount of log information to be generated. There is a tradeoff decision 

that needs to be made when configuring audit, because a large number of 

generated audit records will provide more analytical data, but it will also 

require more CPU time and storage space, and may make it possible to hide 

malicious activity within an overwhelming amount of non-malicious activity. 

The audit services will make the log data available to log servers in the second 

tier through a protected network connection or other secure means.   

 2nd Tier: Log Analysis and Storage. This tier consists of log servers capable 

of collecting and storing log data from multiple hosts. Log data can be stored 

on the log servers themselves or on separate database servers. 
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 3rd Tier: Log Monitoring. This tier consists of consoles and tools that allow 

operators to monitor and review log data Tools can range from simple 

applications that allow operators to search and display audit records to IDS 

applications that perform real time monitoring of events.  

The focus of this paper is to design the first tier log generation mechanism of the LPSK 

and to make provisions for the log data to be stored and retrieved for review in the second 

and third tiers of a log management architecture. 

3. Audit Records Standard 

An auditing system records important system events, where the data associated 

with each event is saved in the form of some kind of record.  Even though most modern 

systems implement some form of audit, the industry as a whole lacks standards on the 

format of the audit records. A review of the formats used by the major operating systems 

today shows that almost all systems use their own proprietary audit record formats. This 

incompatibility often results in difficulties in log management, especially when events 

from different systems need to be combined [12]. This paper will give a more thorough 

discussion of the pros and cons of the different types of audit record format in Chapter 4. 

C.  SUMMARY 

This chapter has provided background on the basic principles of the LPSK and 

how it contributes to the construction of high assurance systems. It has also given an 

overview of the purpose for the architecture of audit mechanisms for such a system. 
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III. REQUIREMENTS  

The TCX LPSK functional specification [5] includes a list of requirements for its 

audit subsystem. As the LPSK is designed to be compliant with the SKPP [3], its audit 

subsystem must also fulfill the requirements of the SKPP. Below is a list of items that are 

mentioned in the TCX LPSK functional specifications and SKPP: 

 Security audit event selection, 

 Security audit automatic response, 

 Security audit data generation, and 

 Security audit review 

Each of the above will be described in greater detail below. 

A. SECURITY AUDIT EVENT SELECTION 

Logging too little information is definitely not desirable, but logging too much 

may also be a problem. Logging will increase system overhead in terms of both storage 

space and processor time. This may result in a reduction in performance and significant 

reduction of storage space available for other processes in a system having tight resource 

constraints. Having too much audit log information may also increase the time needed for 

the operators to review the audit data. Thus, there is a need for the audit subsystem to 

offer the flexibility for administrators to specify the level of logging to be done on the 

system. This should be determined based on the operational requirements. 

In the LPSK, the granularity of auditable events is defined using a configuration 

vector. A configuration vector is read by the LPSK during the kernel initialization phase 

and contains a set of information that describes the initial secure state of the LPSK 

platform and how the LPSK shall behave during the run-time. It also contains 

configurable options for the audit subsystem.  

The SKPP requires that the separation kernel be able to include or exclude events 

from the runtime audited events based on the following attributes: 
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 Resource identity, 

 Subject identity, 

 Event type, 

 Success of auditable security events, and 

 Failure of auditable security events 

Table 1 shows the optional auditable events that can be switched on or off based 

on the different choices in the configuration vector. 

Table 1.   Auditable Events via a Configuration Vector 

Auditable Events Attributes 

When a signal is sent by a particular subject (success, 
failure, or both) 

Subject identity 

When a signal is received by a particular subject Subject identity 

When a software interrupt is invoked by a particular 
subject 

Subject identity 

When a device read is requested by a particular subject 
(success, failure, or both) 

Subject identity 

When a device write is requested by a particular subject 
(success, failure, or both) 

Subject identity 

When a device configuration is requested by a particular 
subject (success, failure, or both) 

Subject identity 

When the read of an eventcount is requested by a 
particular subject (success, failure, or both) 

Subject identity 

When the advance of an eventcount is requested by a 
particular subject (success, failure, or both) 

Subject identity 

When an await on an eventcount is requested by a 
particular subject (success, failure, or both) 

Subject identity 

When  a  process awakes from an await on an 
eventcount 

Subject identity 

When the ticket of a sequencer is requested by a 
particular subject (success, failure, or both) 

Subject identity 
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When a read operation of a particular device is requested 
(success, failure, or both) 

Device identity 

When a write operation of a particular device is 
requested (success, failure, or both) 

Device identity 

When a configuration operation for a particular device is 
requested (success, failure, or both) 

Device identity 

When a ticket of a sequencer is requested (success, 
failure, or both). 

Sequencer Event 

When an advance of an eventcount is requested 
(success, failure, or both) 

Eventcount Event 

When a read of an eventcount is requested (success, 
failure, or both) 

Eventcount Event 

When an await on an eventcount is requested (success, 
failure, or both) 

Eventcount Event 

When a wakeup on an eventcount occurs. Eventcount Event 

When a particular segment is swapped in (success, 
failure, or both) 

Memory segment Event 

When a particular segment is flushed (success, failure, 
or both) 

Memory segment Event 

When a particular segment is swapped out (success, 
failure, or both) 

Memory segment Event 

When an mseg is created Memory segment Event 

 

Other configurable audit attributes in the configuration vector include: 

 Enabling or disabling of audit 

 Size of the audit buffer 

 Action when audit buffer is full 

o Overwrite oldest record, 

o Halt the system, or 

o Shutdown the system 
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B. SECURITY AUDIT AUTOMATIC RESPONSE 

The SKPP requires that the LPSK run a suite of self tests to verify both the 

hardware and software components of the kernel during start-up, periodically during 

normal operation, and during recovery. The audit subsystem shall record each of the 

failures and if required, the actions taken by the LPSK to recover from the failure. The 

audit subsystem may also be required to perform special actions such as halting the 

system upon detection of a critical failure during both the LPSK initialization and run-

time phases. Table 2 shows a list of actions to be performed by the audit subsystem. 

Table 2.   Special Actions Taken by Audit Subsystem 

Events Actions to be taken by audit subsystem 

Any audited event that causes the LPSK to 

halt the system 

Display an informative message on the 

screen prior to the halt 

Size of the audit buffer is specified outside 

the valid range 

Display an informative message on the 

screen and halt the system 

Failure of LPSK self-test Record actions taken by the LPSK to try to 

correct the failure 

Unsuccessful binding of security attributes 

to individual partitions 

Display an informative message on the 

screen and halt the system 

Attempt to recover the LPSK to a secure 

state 

Record actions taken by the LPSK to try to 

recover (or halt the system) 

Detection of invalid value or set of values 

in binary configuration vector during LPSK 

initialization 

Halt the system 

Inability of LPSK to return to a secure state 

after failure of a security function 

Halt the system 
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C. SECURITY AUDIT DATA GENERATION 

Based on the SKPP and LPSK requirements, a list of events has been identified as 

auditable. The audit subsystem shall be able to generate an audit record for each auditable 

event. In addition to the optional auditable events mentioned in section A, the following 

is a  list of mandatory events that must be audited if audit is enabled in the configuration 

vector. 

 Values of configuration vector 

 Unsuccessful binding of security attributes to individual partitions, subjects, 

and non-subject exported resources 

 The assignment of a default value to the configuration data during LPSK 

initialization 

 The detection during LPSK initialization of an invalid value or set of values in 

a binary configuration vector 

 The successful completion of LPSK initialization 

 Successful start-up and shutdown of the LPSK audit mechanism by the LPSK 

Initializer 

 Actions taken because of a failure of an LPSK self-test 

 All requests for a configuration change 

 The success of each startup of the LPSK 

 A failure of an LPSK self test 

 Any detected loss of secure state. 

 Action taken to attempt to recover the LPSK to a secure state 

 The inability of the LPSK to return to a secure state after failure of a security 

function. 

 Changes to the LPSK time source 



 16

 Detection of a SAK invocation. 

 The shutdown, power down or halt of a platform. 

 Detection of duplicate MAC addresses 

D. SECURITY AUDIT REVIEW 

Audit records may contain sensitive information about the system. Thus, the audit 

services shall ensure that the records are only exported to authorized subjects. The audit 

subsystem shall store the audit records in an internal audit buffer and provide an external 

interface so that authorized subjects  may obtain the buffered audit records. The LPSK 

functional specification requires the audit subsystem to provide call interfaces to retrieve 

the following information: 

 Size of the audit buffer, 

 Oldest buffered audit record, and 

 Audit statistics 

o Number of audit records overwritten 

o Number of audit records generated 

Audit records are not useful if they cannot be reviewed in a timely manner. To 

ensure that the relevant parties are able to interpret each audit record, a standard audit 

record format shall be defined and used consistently in the system. This record format 

shall be properly documented and made available to all relevant parties that need to 

handle audit records. 

The SKPP also mandates that an audit record shall minimally contain the 

following information: 

 Data and time of an event, 

 Type of an event, 

 Subject Identity, 
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 Success or failure of the event, and 

 The identity of the relevant resource (where applicable) 

E. SUMMARY 

This chapter provided an overview of the various requirements for the LPSK audit 

subsystem based on the SKPP and TCX LPSK functional specification documents. A 

design and implementation to address the requirements is discussed in the next chapter.  
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IV. DESIGN AND IMPLEMENTATION 

This chapter starts with an overview of the design of the audit subsystem 

components. It is followed by a discussion on the audit record format and design of the 

audit record generation and collection. The fourth section describes the implementation 

of the audit module interfaces. The last section describes the implementation of the 

kernel’s audit buffer.   

A. HIGH LEVEL DESIGN 

This section presents a high level view of the LPSK audit subsystem and 

discusses the considerations and choices made in the design of the audit subsystem and 

its various components. 

1.  Overview 

Figure 1 shows a high level overview of the interactions between the audit 

subsystem modules and the other system components.   

 

 

Figure 1.   High Level Overview of Audit Subsystem 
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The LPSK platform is based on an Intel x86 processor, which consists of 4 

Privilege Levels (PL), ranging from PL0, which is the most privileged, to PL3, which is 

the least privileged. The LPSK audit subsystem resides in PL0. The audit events are 

detected by other kernel modules, which then communicates relevant event information 

to the audit subsystem through a module interface.  

The Audit Collector module receives the audit request from the kernel functions 

and determines whether to record the audit information based on the configured audit 

policy. If the event is to be audited, the Audit Collector module will format the audit 

record in the appropriate binary format and send it to the Audit Buffer.  

The Audit Buffer provides temporary storage for the audit records before they are 

read by an authorized subject and transferred to a log file in a secondary storage space. 

Due to the limited space in the Audit Buffer, old records that have been read by an 

authorized subject are erased from the Audit Buffer so that memory space can be reused 

to store new records. 

The Audit Retrieval and Viewing Application currently resides in PL3 so that it is 

able to make full use of the richer range of services from the underlying layers to provide 

a user interface to an administrator to view and manage audit records.  The Retrieval and 

Viewing Application issues requests to the Audit Collector module which will then 

retrieve the oldest record from the Audit Buffer and forward it to the application for 

further processing. 

2. Starting and Stopping the Audit Subsystem 

Figure 2 shows the sequence of starting, running and stopping of the audit 

subsystem.  
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Figure 2.   Audit Subsystem Life Cycle 

1. The user selects a configuration vector for the LPSK. The LPSK Initializer 

will read the binary data of the configuration vector and configure the system 

state according to what is specified inside the configuration vector. 

2. The LPSK Initializer will start the Audit Collector, passing configuration data 

to it. The configuration vector contains information such as the size of the 

Audit Buffer and types of events to be audited.  

3. The Audit Collector initializes its internal variables and creates an audit buffer 

based on values specified in the configuration vector.  

4. The Audit Collector will then enter into the ready state and is able to accept 

audit requests. Because the Audit Collector needs to start collecting records 

during the LPSK initialization phase, it must be started at the earliest possible 

stage. 

5. The Audit Collector will continue to respond to audit requests throughout the 

entire LPSK runtime phase and during the LPSK shutdown phase. In order to 
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give ample time for the Audit Retrieval to retrieve all the records that are 

remaining in the Audit Buffer, the Auditor Collector should be among the last 

processes to shutdown [5].  In addition, the Audit Collector can also initiate a 

time delay before shutting down the audit subsystem. The value of the time 

delay can be configured in the configuration vector. 

B. AUDIT RECORD FORMATS 

A standard audit log format is important to allow the different components of a 

system to exchange and interpret audit records correctly. However, a survey of audit log 

formats used by the common operating systems shows that most of them use different 

proprietary formats. There is no de facto standard in the industry today. The many 

different types of log formats in use today include text-based, Extensible Markup 

Language (XML) [13], databases and binary files. Some of these formats (such as text-

based and XML files) are designed to be read by humans, while others (such as databases 

and binary files) are not. The section below provides a discussion and comparison of the 

popular types of log formats. Criteria for audit format selection for the LPSK are 

discussed. This is followed by discussion of the LPSK audit record format. 

1. Types of Audit Record Format 

The various types of audit record formats are described below. 

a. Syslog  

Text-based formats can be in the form of a comma-separated or tab-

separated text file, which can be proprietary in nature or it can follow the syslog format 

[14]. Syslog was initially developed as part of the Sendmail project [15] but due to its 

ease of use, has been widely used by many applications, especially in UNIX systems.  

A syslog record consists of 3 parts. The first part contains the identity of 

the source and severity level. The second part contains a timestamp and the hostname 

while the third part contains the actual log message content. There are, however, no 

standards for what information is required or how the information should be formatted. It 

is usually just a string of text that describes what happened. While this provides the 
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flexibility to decide what information to include inside the content, different 

implementations may lead to a difficulty in interpreting the log entries. This greatly limits 

its potential use as a standard log format for audit log exchange among different systems. 

The fact that the log content is in text format means that while they are 

highly readable by humans, log records cannot be easily parsed by machines. Processing 

and filtering of syslog records based on the attributes of the events can be challenging. A 

text-based format also takes up much more space compared to a binary format. This 

could cause significant problems for platforms with limited resources, such as handheld 

devices.  

b. XML 

XML [13] is a markup language to represent text data in a well-structured 

way. It is still text-based, but due to the highly structured nature of an XML document, it 

is meant to be both human-readable and parseable by machines. It is generally used to 

exchange information among different applications. The advantages of logging in XML 

format include ease of viewing, processing, and is well understood by many applications. 

There is, however, a lack of an open standard on a XML log formats. XML files also take 

up much more space than a binary file and require a high amount of computational 

resources to parse the file, making it a poor choice for platforms with limited resources. 

c. Database 

Logs can be stored directly into relational databases. Databases provide 

advanced indexing and search capabilities that text or binary log files are not able to 

provide. But the need for a database server means that it is highly unlikely to be used as a 

native log format in the kernel. It is more suitable to be used by higher level applications 

rather than by operating systems.  

d. Binary Format 

A binary format is commonly used by the major operating systems. Some 

of the examples are Event Log File Format [16] used by Microsoft Windows operating 

systems and Basic Security Module (BSM) [17] used by Solaris. The main advantage of a 
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binary log file is that it is small when compared to a text-based format. It is also highly 

flexible with regard to the type of data that it can store. Also, binary logs can be 

formatted in a way that allows for easy parsing by machines. The main drawback of a 

binary format is that it requires a log viewer application to translate the binary bits to 

human-readable text so that the administrator can review the logs. 

2. Selection of an Audit Log Format for LPSK 

In this section, the criteria for selection of the LPK audit record format are 

presented and audit record types are compared for suitability in the LPSK. 

One of the most important factors when considering an audit log format for the 

LPSK is that it must be lightweight in terms of both storage and computational resources. 

A kernel should be small and contain only the essential services. Making the audit log 

small and simple also allows the deployment of the LPSK on handheld devices that have 

limited storage and computational resources. 

Based on the survey of the different log formats, binary logs have been selected as 

the best choice for the LPSK because the amount of space required for collection of audit 

records is significantly smaller than the other log formats, and the binary format can be 

parsed easily. The Syslog and XML formats are attractive options for remote logging 

when logs need to be transferred from multiple hosts to a central log server. The binary 

logs collected by the LPSK can be converted to these formats at a later stage if there is 

such a requirement. Solaris also takes a similar approach by providing a praudit [17] 

utility to convert BSM audit records to human-readable text or XML format when 

required. A database can also be used to store audit records in a remote log server. Table 

3  gives a comparison of the various log formats. 
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Table 3.   Comparison of Different Audit Log Format 

 Syslog XML Database Binary 

Human-

Readable 

Yes Yes No No 

Easily 

Parseable 

No Yes Yes Yes 

Understood by 

multiple 

applications 

Yes Yes No No 

Size Large Large Depends Small 

Computational 

Resource 

Requirement  

Low High High Low 

 

3. LPSK Audit Record Format  

Details of the LPSK audit record format are presented in this subsection. 

a. Overview 

After comparing the different audit record formats, a binary based log 

format was chosen as the format for the LPSK. A study was conducted to determine 

whether any of the existing binary audit record formats can be used directly by the LPSK, 

but none of them is entirely suitable because most are designed to work in a specific 

operating system environment. For example, BSM includes classes of log records 

describing events related to the UNIX file system that are not relevant in the LPSK. 

Similarly, there are events specific to the LPSK that cannot be described by any of the 

existing audit record formats. Thus, there is a need to design a set of record formats 

specifically for the LPSK. The BSM Format was used as a reference model when 
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designing the audit log format for the LPSK due to the fact that it is flexible and simple to 

implement, and that the LPSK can benefit from its design.  

b. Audit Record Structure 

Each audit record represents an event that has been selected for auditing 

according to the configuration vector. An audit record is made up of a sequence of 

tokens, each describing an attribute of the event that the audit record describes. Each 

record begins with a header token and ends with a trailer token. There could be one or 

more tokens of other types in between the header and trailer tokens.  

Each token starts with a one-byte token identifier, which indicates the type 

of attributes the token carries. There could be one or more attributes in the token 

depending on the token type. As a result, the length of each type of token varies. The 

varying token length approach of the audit record format allows a high degree of 

flexibility in constructing records for different types of events with different attributes. It 

also ensures that no space is wasted as in the case of a fixed length record that allocates 

the maximum amount of storage space for each record. This helps to keep the audit log 

small. 

The following is an example of an audit record that describes the detection 

of a Secure Attention Key (SAK) invocation. 

13 bytes 2 bytes 5 bytes 

Header Token Partition Token Trailer Token 

The header token contains the event identifier, timestamp and the length of 

the entire record. The event identifier indicates the type of event the record describes. The 

partition token contains information about the partition from which the SAK is invoked 

and the trailer token contains a checksum to detect accidental modifications of the audit 

record. 
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c. Tokens 

A total of 17 tokens have been defined in order to describe the various 

auditable LPSK events. A header token and a trailer token will be found in all audit 

records. The other tokens are used when additional attributes are required in the record. 

Each token starts with a one-byte unique token identifier to allow the parser to know the 

type of data that follows. Table 4 shows the LPSK token identifiers. 

Table 4.   Token Identifier 

Token Token Identifier (in hexadecimal) 

Header Token 0x00 

Trailer Token 0xFF 

Argument Token 0x10 

Configuration Vector Token 0x11 

Device Token 0x12 

Dseg Token 0x13 

Eventcount Token 0x14 

Interrupt Token 0x15 

MAC Token 0x16 

Mseg Token 0x17 

Partition Token 0x18 

Process Token 0x19 

Return Token 0x1A 

Sequence Token 0x1B 

Signal Token 0x1C 

Subject Token 0x1D 

Text Token 0x1E 
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The following subsections describe each token in more detail 

(1) Header Token. A header token marks the beginning of each 

audit record. It contains the following fields in the order that they are listed. 

 Header token identifier (1 byte), 

 Audit record length, in bytes (2 bytes), 

 Audit  record structure version number (2 bytes), 

 Event identifier to indicate the type of audit event 

 Event modifier to provide additional information about the 

event (2 bytes), and 

 Timestamp of the creation of the audit record (4 bytes) 

1 byte 2 bytes 2 bytes 2 bytes 2 bytes 4 bytes 

Token 

identifier 

Record 

length 

Version 

number 

Event 

identifier 

Event 

modifier 

Timestamp 

Figure 3.   Header Token 

The header token identifier is given a predefined value of 0. Audit 

record length stores the total number of bytes the entire record contains, including the 

header and the trailer tokens. As the length of each record varies, audit record length 

allows the parser to know how many bytes to read for the record. The version number is 

set aside to facilitate future modification to the record structure, so that a parser can parse 

newer and older record structures. 

Each type of auditable event is described using a unique event 

identifier. The event modifier is used as an additional flag to provide more detailed 

descriptions of the events. For example, when recording the “successful start-up and 

shutdown of LPSK audit mechanism”, a modifier with a value of zero (0) indicates that it 

is a start-up event, while a modifier with a value of one (1) indicates that it is a shutdown 

event.  
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The LPSK uses the number of seconds since the start of the IEEE 

POSIX epoch [18] to keep track of date and time for its kernel. The epoch time system 

records date and time in terms of number of seconds elapsed since January 1 1970 

00:00:00 UTC. Using 4 bytes for the timestamp means this audit record structure can 

keep track of time till the year 2106. 

 

(2) Trailer Token. The trailer token marks the end of a record. 

It contains the following fields in the order that they are listed. 

 Trailer token identifier (1 byte),  

 Audit record length, in bytes (2 bytes), 

 CRC32 checksum of the entire record (4 bytes) 

1 byte 2 bytes 4 bytes 

Token identifier Record length CRC32 checksum 

Figure 4.   Trailer Token 

The record length is contained in both the header and trailer 

tokens. The purpose of this redundancy is to allow for the forward and backward parsing 

of the records. The CRC32 checksum is appended to the end of each record to support 

checks for accidental corruption of the record. 

 

(3) Argument Token. The argument token contains information 

about argument values passed to a kernel function. It contains the following fields in the 

order that they are listed. 

 Argument token identifier (1 byte), 

 Argument identifier (1 byte), 

 Argument value (4 bytes), 

 Length of optional text descriptive text string (1 byte), and 
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 Optional text string (n bytes where 0 ≤ n ≤ 255) 

1 byte 1 byte 4 bytes 1 byte n bytes 

Token identifier Argument 

identifier 

Argument value Text length Text 

Figure 5.   Argument Token 

A function call may contain several parameters. Thus, an audit 

record may also contain several argument tokens. In this case, the argument identifier 

indicates which parameter it corresponds to. The optional text string provides the 

flexibility of adding text descriptions to the arguments if needed. 

(4) Configuration Vector Token. The configuration vector 

token contains information to identify the configuration vector used to initialize the 

LPSK. It contains the following fields in the order that they are listed. 

 Configuration vector token identifier (1 byte), 

 Text length (1 byte), 

 Descriptive text (n bytes where 0 ≤ n ≤ 255), and 

 MD5 hash (16 bytes) 

1 byte 1 byte n bytes 16 bytes 

Token identifier Text length Descriptive text MD5 hash 

Figure 6.   Configuration Vector Token 

The descriptive text contains the human readable description of the 

configuration vector. The MD5 hash value of the entire binary configuration vector 

provides a means to correctly identify the configuration vector that is used to initialize the 

LPSK. 
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(5) Device Token. The device token contains information 

about the device. It contains the following fields in the order that they are listed. 

 Device token identifier (1 byte), 

 Major number (1 byte), 

 Minor number (1 byte), 

 Type (1 byte), and  

 Partition ID (1 byte) 

1 byte 1 byte 1 byte 1 byte 1 byte 

Token identifier Major number Minor number Type Partition ID 

Figure 7.   Device Token 

The major number indicates the device category. The minor 

number refers to the specific instantiation of a device. The type attributes can be either 

CONTROL or DATA depending on how the device was accessed. The partition ID is the 

home partition of the device. 

(6) Dseg Token. The dseg token contains information about the 

data segments. It contains the following fields in the order that they are listed. 

 Dseg token identifier (1 byte), 

 Privilege level assigned to dseg (1 byte), 

 Partition ID (1 byte), 

 Path length (1 byte), and 

 Path (n bytes) 
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1 byte 1 byte 1 byte 1 byte n bytes 

Token identifier Privilege level Partition ID Path length Path 

Figure 8.   Dseg Token 

A dseg is a data segment in a process’ address space that is 

initialized from a secondary storage segment. The maximum number of dsegs defined in 

the LPSK specification is 64. Each dseg is identified by a unique identifier. The privilege 

level is the Intel PL to which the dseg was allocated during initialization. The partition ID 

is the home partition of dseg. The path attribute contains the path to the secondary storage 

segment, while the path length indicates the length of the path.  

(7) Eventcount Token. The evencount token contains 

information about the eventcount. It contains the following fields in the order that they 

are listed. 

 Eventcount token identifier (1 byte), 

 Eventcount ID, and 

 Eventcount value 

1 byte 1 byte 4 bytes 

Token identifier Eventcount ID Eventcount value 

Figure 9.   Eventcount Token 

The eventcount is used for inter-process synchronization. A 

maximum of 64 platform-wide eventcounts is possible, and each has a unique eventcount 

ID and stores a 32-bit number. The eventcount value is the value of the eventcount at the 

time of the audited event. 

(8) Interrupt Token. The interrupt token contains information 

about the interrupts. The Intel x86 architecture provides a total of 256 interrupts, where 
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each is identified by a unique interrupt number. The token contains the following fields in 

the order that they are listed. 

 Interrupt token identifier (1 byte), and 

 Interrupt number (1 byte) 

1 byte 1 byte 

Token identifier Interrupt number 

Figure 10.   Interrupt Token 

(9) MAC Token. The MAC Token contains information about 

the Media Access Control (MAC) address. It contains the following fields in the order 

that they are listed. 

 MAC token identifier (1 byte), and 

 MAC address (6 bytes) 

1 byte 6 bytes 

Token identifier MAC address 

Figure 11.   MAC Token 

(10) Mseg Token. The Mseg token contains information about 

the memory segment. It contains the following fields in the order that they are listed. 

 Mseg token identifier (1 byte), 

 Mseg identifier (1byte), 

 Size of the mseg (4 bytes), 

 Privilege level assigned to mseg (1 byte), and 

 Partition ID (1 byte) 

 



 34

1 byte 1 byte 4 bytes 1 byte 1 byte 

Token identifier Mseg identifier Size Privilege level Partition ID 

Figure 12.   Mseg Token 

An mseg is an Intel x86 data segment that is created in a process’ 

address space. The maximum number of msegs defined in the LPSK specification is 32. 

Each mseg is identified by a unique identifier. The size is specified during initialization. 

The privilege level is the Intel PL to which the mseg was allocated during initialization. 

The partition ID refers to the home partition that the mseg belongs to. 

(11) Partition Token. A partition token contains information to 

identify a partition. It contains the following fields in the order that they are listed. 

 Partition token identifier (1 byte),  and 

 Partition ID (1 byte) 

 

1 byte 1 byte 

Token identifier Partition ID 

Figure 13.   Partition Token 

The maximum number of partitions defined in the LPSK 

specification is 256. Each partition is identified by a unique identifier called the partition 

ID. 

(12) Process Token. A process token contains information to 

identify a process. It contains the following fields in the order that they are listed. 

 Process token identifier (1 byte), 

 Partition ID (1 byte), and 

 Process Identifier (1 byte) 
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1 byte 1 byte 4 bytes 

Token identifier Partition ID Process identifier 

Figure 14.   Process Token 

(13) Return Token. The return token contains the return status of 

a kernel function call. It contains the following fields in the order that they are listed. 

 Return token identifier (1 byte), and 

 Return value (4 bytes) 

 

1 byte 4 bytes 

Token identifier Return value 

Figure 15.   Return Token 

(14) Sequencer Token. The sequencer token contains 

information to identify a sequencer. It contains the following fields in the order that they 

are listed. 

 Sequencer token identifier (1 byte), 

 Sequencer identifier (1 byte), and 

 Sequencer value (4 bytes) 

 

1 byte 1 byte 4 bytes 

Token identifier Sequencer identifier Sequencer value 

Figure 16.   Sequence Token 

A sequencer is used for inter-process synchronization. A maximum 

of 64 platform-wide sequencers is possible in the LPSK. Each is identified by a unique 
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identifier. The sequencer value is the value of the sequencer at the time of the audited 

event. 

(15) Signal Token. The signal token contains information to 

identify a signal channel. It contains the following fields in the order that they are listed. 

 Signal token identifier (1 byte), and 

 Signal channel identifier (1 byte) 

 

1 byte 1 byte 

Token identifier Signal channel identifier 

Figure 17.   Signal Token 

A signal is an abstract communication mechanism implemented by 

the LPSK to allow a subject to communicate with another subject via the recipient’s 

signal channel. Each subject can have a maximum of 32 signal channels. A signal token 

is usually used together with subject tokens to provide information about the sender and 

receiver of a signal. 

(16) Subject Token. The subject token contains information to 

identify a subject. It contains the following fields in the order that they are listed. 

 Subject token identifier (1 byte), 

 Partition ID (1 byte), 

 Process identifier (4 bytes), and 

 Hardware Privilege level (1 byte) 

 

1 byte 1 byte 4 bytes 1 byte 

Token identifier Partition ID Process Identifier Hardware Privilege 

level 
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Figure 18.   Subject Token 

 

 

The hardware privilege level is the Intel PL to which the subject 

was allocated during initialization. 

(17) Text Token. The text token describes a text string. It 

contains the following fields in the order that they are listed. 

 Text token identifier (1 byte), 

 Length of the text string (1 byte), and 

 Text string (n bytes where 0 ≤ n ≤ 255) 

 

1 byte 1 byte n bytes 

Token identifier Length of text Text 

Figure 19.   Text Token 

4. Event Classes and Identifier 

There are altogether 45 auditable events, and each of them has a unique two-byte 

event identifier. They are categorized into a number of different classes for ease of 

management. The first byte of the event identifier indicates the class and the second byte 

indicates the event number within the class.  For example, the event “successful 

completion of LPSK initialization” belongs to the Initilization class and has a class 

identifier of 1. As it is the 5th event within the class, it is being assigned an event 

identifier of 0x0105 (in hexadecimal). Table 5 provides information about the event 

classes. 
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Table 5.   Event Classes 

Class Name Description Class Identifier 

(in hexadecimal) 

Initialization Events that occur during the initialization 

phase of the LPSK 

0x01 

System System-wide events that occur during the 

runtime phase of the LPSK 

0x02 

Device Events related to devices 0x03 

Process Events related to process management 0x04 

Memory Events related to memory management 0x05 

Synchronization Events related to resources used for 

synchronization such as eventcount and 

sequencer. 

0x06 

 

Table 6 shows the list of events in the Initialization class, their corresponding 

event identifiers and sequence of tokens used to construct them. 
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Table 6.   Events in Initialization Class 

Events in Initialization Class Sequence of 

Tokens 

Event ID 

(in hex) 

Identifying information about configuration vector header 

conf. vector 

trailer 

0x0101 

Unsuccessful binding of security attributes to individual 

partitions, subjects, and non-subject exported resources.  

Headertext 

trailer 

0x0102 

The assignment of a default value to the configuration 

data during LPSK initialization. 

 

header 

text 

trailer 

0x0103 

The detection during LPSK initialization of an invalid 

value or set of values in a binary configuration vector.   

headertext 

trailer 

0x0104 

The successful completion of LPSK initialization header 

trailer 

0x0105 

 

Table 7 shows the list of events in the System class, their corresponding event 

identifiers and the sequence of tokens used to construct them. 
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Table 7.   Events in System Class 

Events in System Class Sequence of 

Tokens 

Event ID 

(in hex) 

Successful start-up and shutdown of the LPSK audit 

mechanism by the LPSK Initializer. (Event modifier: 0 

indicates a start-up, and 1 indicates a shutdown) 

header 

trailer 

0x0201 

 

Actions taken because of a failure of an LPSK self-test.  

This will result in a halt of the platform. 

 

header 

text 

trailer 

0x0202 

All requests for a configuration change. 

 

header 

subject 

argument 

return 

trailer 

0x0203 

The success of each startup of the LPSK. header 

trailer 

0x0204 

A failure of an LPSK self test. 

 

header 

text 

trailer 

0x0205 

Any detected loss of secure state. 

 

header 

text 

trailer 

0x0206 
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Action taken to attempt to recover the LPSK to a secure 

state. 

 

header 

text 

trailer 

0x0207 

The inability of the LPSK to return to a secure state after 

failure of a security function. 

 

header 

text 

trailer 

0x0208 

Changes to the LPSK time source. 

 

header 

argument 

subject 

return 

trailer 

0x0209 

Detection of a SAK invocation. 

 

header 

partition 

trailer 

0x020A 

The shutdown, powerdown or halt of a platform. (Event 

modifier: 0 indicates a shutdown, 1 indicates a 

powerdown and 2 indicates a halt) 

 

header 

subject 

trailer 

0x020B 

 

 

Table 8 shows the list of events in the Device class, their corresponding event 

identifiers and sequence of tokens used to construct them. 
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Table 8.   Events in Device Class 

Events in Device Class Sequence of 

Tokens 

Event ID 

(in hex) 

When a read operation of a particular device is requested 

(success, failure, or both) 

 

header 

subject 

device 

return 

trailer 

0x0301 

When a write operation of a particular device is 

requested (success, failure, or both) 

 

header 

subject 

device 

return 

trailer 

0x0302 

When a read meta-data operation for a particular device 

is requested (success, failure, or both) 

 

header 

subject 

device 

argument 

return 

trailer 

0x0303 

When a write meta-data operation for a particular device 

is requested (success, failure, or both) 

header 

subject 

0x0304 
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 device 

argument 

return 

trailer 

Duplicated MAC address header 

partition 

mac  

trailer 

0x0305 

When a device read is requested by a particular subject. 

(success, failure, or both) 

 

header 

subject 

device 

return 

trailer 

0x0306 

When a device write is requested by a particular subject. 

(success, failure, or both) 

 

header 

subject 

device 

return 

trailer 

0x0307 

When a device configuration is requested by a particular 

subject. (success, failure, or both) 

 

header 

subject 

device 

argument 

return 

0x0308 
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trailer 

 

Table 9 shows the list of events in the Process class, their corresponding event 

identifiers and sequence of tokens used to construct them. 

Table 9.   Events in the Process Class 

Events in Process Class Sequence of 

Tokens 

Event ID 

(in hex) 

The success or failure of starting a process.   header 

process 

trailer 

0x0401 

The termination of a process.  

 

header 

process 

trailer 

0x0402 

When a signal is sent by a particular subject (success, 

failure, or both) 

header 

subject (sender) 

signal 

subject (recipient) 

return 

trailer 

0x0403 

When a signal is received by a particular subject header 

subject (recipient) 

signal  

subject (sender) 

0x0404 
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return 

trailer 

When a software interrupt is invoked by a particular 

subject 

header 

subject 

interrupt  

return 

trailer 

0x0405 

Table 10 shows the list of events in the Memory class, their corresponding event 

identifiers and the sequence of tokens used to construct them. 

Table 10.   Events in the Memory Class 

Events in Memory Class Sequence of 

Tokens 

Event ID 

(in hex) 

Attempt to swapin a dseg exceeded memory quota.  

 

header 

subject 

dseg 

trailer 

0x0501 

Attempt to create an mseg exceeded memory quota.  header 

subject 

mseg 

trailer 

0x0502 

When a particular segment is swapped in (success, 

failure, or both) 

 

header 

subject 

dseg 

0x0503 
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return 

trailer 

When a particular segment is flushed (success, failure, 

or both) 

 

header 

subject 

dseg 

return 

trailer 

0x0504 

When a particular segment is swapped out (success, 

failure, or both) 

 

header 

subject 

dseg 

return 

trailer 

0x0505 

When a mseg is created 

 

header 

subject 

mseg 

return 

trailer 

0x0506 

 

Table 11 shows the list of events in the Synchronization class, their corresponding 

event identifiers and the sequence of tokens used to construct them. 

Table 11.   Events in the Synchronization Class 

Events in Synchronization Class Sequence of 

Tokens 

Event ID 

(in hex) 
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When a process awakes from an await on an eventcount 

(success, failure, or both) 

header 

subject 

eventcount 

return 

trailer 

0x0601 

When an advance of an eventcount is requested 

(success, failure, or both) 

header 

subject 

eventcount 

return 

trailer 

0x0602 

When a read of an eventcount is requested (success, 

failure, or both) 

header 

subject 

eventcount 

return 

trailer 

0x0603 

When an awake of an eventcount is requested (success, 

failure, or both) 

header 

subject 

eventcount 

return 

trailer 

0x0604 

When a wakeup on an eventcount is requested (success, 

failure, or both) 

Header 

subject 

eventcount 

0x0605 
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return 

trailer 

When a ticket of a sequencer is requested (success, 

failure, or both) 

header 

subject 

sequencer 

return 

trailer 

0x0606 

When the read of an eventcount is requested by a 

particular subject (success, failure, or both) 

header 

subject 

eventcount 

return 

trailer 

0x0607 

When an advance of an eventcount is requested by a 

particular subject (success, failure, or both) 

 

header 

subject 

eventcount 

return 

trailer 

0x0608 

When an await on an eventcount is requested by a 

particular subject (success, failure, or both) 

 

header 

subject 

eventcount 

return 

trailer 

0x0609 

When the ticket of a sequencer is requested by a header 0x060A 
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particular subject (success, failure, or both) 

 

subject 

sequencer 

return 

trailer 

 

C. DESIGN OF AUDIT GENERATION AND COLLECTION 

An overview of the processes involved in the generation and collection of audit 

records is presented. This is followed by a discussion of the design considerations in the 

proposed workflow. 

1. Overview 

The following is the flow of events during the audit generation and collection 

phase: 

 A kernel module reaches a potential audit event generation point, usually 

just before the return statement inside the relevant kernel function. It 

invokes a function call to the audit subsystem to check whether the audit is 

enabled. The audit subsystem replies with a predetermined return value. 

 If audit is disabled, the kernel module will not perform any audit 

generation operations. If audit is enabled, the kernel module will gather 

the necessary event information and send it to the audit subsystem through 

a function call.   

 The audit subsystem will format the event information into the correct 

token format, append header and trailer tokens, and write the record into 

the Audit Buffer.  

2. Determination of Auditable Events  

The configuration vector provides the flexibility for an administrator to customize 

the audit policy according to operational needs. The administrator can decide which audit 
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events are to be generated and written to the audit logs. Thus, at the audit generation and 

collection phase, there must also be a mechanism for the system to perform a check of the 

audit policy to decide whether the event should be audited. 

A few approaches have been considered: 

1. The kernel modules are individually responsible for storing audit policy 

related to their functionality, which allows the individual modules to 

determine whether a potential event is auditable before invoking any function 

calls to the audit subsystem. However, this means that potential audit event 

decision points are spread throughout the kernel code. The lack of a common 

module to perform the checking spreads the audit policy across many modules 

and may result in difficulty in management of the audit policy code. 

2.  Kernel modules will always send all audit event information to the audit 

subsystem. The audit subsystem is responsible for determining whether the 

event is auditable. The advantage of this approach is the ease of management 

of code as all audit configurations are maintained within the audit module. 

However, there could be a potential performance issue as all event 

information will be sent to the audit subsystem regardless of whether the 

events should be audited or not, or whether auditing has been disabled 

completely per the configuration vector.  

3. The audit subsystem provides an interface to other kernel modules to allow 

them to check whether a particular event should be audited before sending all 

the event information. However, in this case, the audit subsystem still needs 

most of the event information to decide whether the event is auditable. 

Ultimately, there might not be any significant improvement over Option 2. 

4. Audit subsystem provides an interface to other kernel modules to allow them 

to check whether audit is enabled. This helps to reduce the amount of 

unnecessary event data transferred in the event that audit is disabled. 

Option 4 combined with Option 2 were selected and implemented in this research 

because it provides a balanced approach by not requiring kernel modules to perform their 
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own audit policy checking while still eliminating unnecessary function calls when audit is 

disabled. Future work is needed to assess the performance impact of Option 2 before 

deciding the best way to perform the audit policy checking.  

3. Audit Module Interfaces 

In order for the LPSK modules to communicate with the audit subsystems, a set 

of application programming interfaces (API) must be provided by the audit subsystem. 

Ideally, one common interface can be used by all LPSK modules to send event 

information to the audit subsystem. However, that is impractical because the relevant 

information differs from event to event. Such a one-size-fits-all interface would require 

the interface to support all possible parameters, even though only a few would be used for 

most events. A more practical approach is to provide a separate interface for each type of 

event. Detailed discussions of the implementation of the interfaces are presented in 

Section 4. 

 Even with a separate interface for each type of event, the parameter list can still 

be very long for some events. For easy management, a structure type is defined for each 

type of token and the event information is encapsulated inside the token structure type.  

Pointers to the structure types are passed as parameters to the audit subsystem. This helps 

to keep the list of parameters small. The use of typed structures enhances 

understandability and makes it easier to make amendments in the future.  

 D. AUDIT MODULE INTERFACES IMPLEMENTATION 

The LPSK audit module prototype was developed using the C programming 

language. The implementation of the interfaces is discussed next. 

1. Interfaces to Kernel Modules 

Table 12 shows the structure types defined for the different types of tokens. Event 

information is stored in these structure types and pointers to them are passed as 

parameters to the audit subsystem interfaces. 
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Table 12.   Structure Types for Tokens 

Structure Type Descriptions 

typedef struct { 

    unsigned char arg_id; 

    unsigned int arg_val;  

    unsigned char txt_len;  

    unsigned char txt[256];  

} audit_token_argument_t; 

 

Structure type for argument token 

 arg_id refers to the argument identifier  

 arg_val refers to the argument value 

 txt_len refers to the length of optional 

descriptive text string 

 txt refers to the optional descriptive text 

typedef struct { 

    unsigned char txt_len;  

    unsigned char txt[256];  

    unsigned int size;  

    unsigned char md5hash[16];  

} audit_token_cv_t; 

 

 

 

 

Structure type for configuration vector token 

 txt_len refers to the length of the configuration 

vector descriptive text 

 txt refers to the configuration vector descriptive 

text 

 size refers to the size of the configuration vector 

 md5hash refers to the MD5 hash value of the 

binary configuration vector 

typedef struct { 

    unsigned char major; 

    unsigned char minor;  

    unsigned char type; 

    unsigned char part_id; 

} audit_token_device_t; 

Structure type for device token 

 major_num refers to the major number of the 

device 

 minor_num refers to the minor number of the 

device 

 type refers to the type of device 

 part-id refers to the partition ID of the device 

 

typedef struct { Structure type for dseg token 
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    unsigned char pl; 

    unsigned char part_id; 

    unsigned char path_len; 

    unsigned char path[256]; 

} audit_token_dseg_t; 

 

 pl refers to the privilege level of dseg 

 part_id refers to the home partition ID of dseg 

 path_len refers to the length of the dseg path 

 path refers to the dseg path 

typedef struct { 

    unsigned char ec_id; 

    unsigned int ec_value; 

} audit_token_eventcount_t; 

 

Structure type for eventcount token 

 ec_id refers to the eventcount ID 

 ec_value refers to the value of the eventcount 

typedef struct { 

unsigned char int_num; 

} audit_token_interrupt_t; 

 

Structure type for interrupt token 

 int_num refers to the interrupt number 

 

typedef struct { 

unsigned char mac_addr[6]; 

} audit_token_mac_t; 

 

Structure type for MAC token 

 mac_addr refers to the MAC address 

 

typedef struct { 

    unsigned char mseg_id; 

    unsigned int size;  

    unsigned char pl;  

    unsigned char part_id; 

} audit_token_mseg_t; 

 

Structure type for mseg token 

 mseg_id refers to the mseg identifier 

 size refers to the size of the mseg 

 pl refers to the privilege level of mseg 

 part_id refers to the home partition ID of mseg 

 

typedef struct { 

    unsigned char part_id; 

} audit_token_partition_t; 

 

Structure type for partition token 

 part_id refers to the partition ID 
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typedef struct { 

unsigned char part_id; 

unsigned char proc_id; 

} audit_token_process_t; 

 

Structure type for process token 

 part_id refers to partition ID of the process 

 proc_id refers to the process ID of the process 

 

typedef struct { 

    unsigned int ret_val; 

} audit_token_return_t; 

 

Structure type for return token 

 ret_val refers to the return value of a function 

call 

typedef struct { 

    unsigned char seq_id; 

    unsigned int seq_value; 

} audit_token_sequencer_t; 

 

Structure type for sequencer token 

 seq_id refers to the sequencer ID 

 seq_value refers to the value of the sequencer 

typedef struct { 

    unsigned char sig_channel; 

} audit_token_signal_t; 

 

Structure type for signal token 

 sig_channel refers to the signal channel 

 

typedef struct { 

    unsigned char part_id; 

    unsigned int proc_id; 

    unsigned char pl;  

} audit_token_subject_t; 

 

Structure type for subject token 

 part_id refers to the partition ID of the subject 

 proc_id refers to the process ID of the subject 

 pl refers to the privilege level of the subject 

 

typedef struct { 

    unsigned char txt_len; 

    unsigned char txt[256]; 

} audit_token_text_t; 

 

Structure type for subject token 

 txt_len refers to the length of the text string 

 txt refers to the text string 
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Table 13 describes a list of interfaces that are provided to allow LPSK modules to 

communicate with the audit subsystem. 

Table 13.   Interfaces Provided to LPSK Modules 

Interfaces Description 

unsigned int audit_enabled(void)  Returns TRUE if audit is enabled and 

returns FALSE if not.  

 

unsigned int audit_write_INI_cv( 

     audit_token_cv_t *cv_tokptr); 

Generate an audit record with 

identifying information about the 

configuration vector. The input 

parameter is a pointer to a configuration 

vector token type that contains 

information identifying the 

configuration vector. 

 

unsigned int audit_write_INI_bind( 

     audit_token_text_t *text_tokptr); 

 

Generate an audit record for the 

unsuccessful binding of security 

attributes to individual partitions, 

subjects, and non-subject exported 

resources. The input parameter is a 

pointer to a text token type that 

describes the event. 

 

unsigned int audit_write_INI_assign( 

     audit_token_text_t *text_tokptr); 

 

For some fields in the configuration 

vector, a declared value is optional. 

When an optional value is not given, the 

LPSK platform is required to use a 

default value for the duration of an 

operational mode.  Generate an audit 
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record when such assignments of default 

values during initialization occurred. 

The input parameter is a pointer to a text 

token type that describes the event. 

 

unsigned int audit_write_INI_invalid( 

     audit_token_text_t *text_tokptr); 

 

Generate an audit record for the 

detection during LPSK initialization of 

an invalid value or set of values in a 

binary configuration vector. The input 

parameter is a pointer to a text token 

type that describes the event. 

 

unsigned int audit_write_INI_complete(void); 

 

Generate an audit record for the 

successful completion of LPSK 

initialization 

 

unsigned int audit_write_SYS_auditstart( 

     unsigned short evt_mod); 

 

Generate an audit record for the 

successful start-up and shutdown of the 

LPSK audit mechanism by the LPSK 

Initializer. An input argument of 0 

indicates a start-up, and 1 indicates a 

shutdown 

 

unsigned int audit_write_SYS_actiontest( 

     audit_token_text_t *text_tokptr); 

 

Generate an audit record for the actions 

taken because of a failure of an LPSK 

self-test.  The input parameter is a 

pointer to the text token type that 

describes the actions taken. 

 

unsigned int audit_write_SYS_configchange( Generate an audit record for all requests 
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     audit_token_subject_t *sub_tokptr 

     audit_token_argument_t *arg_tok, 

     audit_token_return_t *return_tok); 

 

for a configuration change. The input 

parameters are pointers to a subject 

token type and an argument token type 

that describes the argument provided for 

the configuration change and a return 

token type that indicates the return 

value. 

 

unsigned int audit_write_SYS_lpskstart(void);

 

Generate an audit record for the success 

of each startup of the LPSK. 

 

unsigned int audit_write_SYS_failtest( 

     audit_token_text_t *text_tokptr); 

 

Generate an audit record for the failure 

of an LPSK self test. The input 

parameter is a pointer to the text token 

type that describes the event. 

 

 

unsigned int audit_write_SYS_loss( 

     audit_token_text_t *text_tokptr); 

 

Generate an audit record for any 

detected loss of secure state. The input 

parameter is a pointer to the text token 

type that describes the event. 

 

unsigned int audit_write_SYS_recover( 

     audit_token_text_t *text_tokptr); 

 

Generate an audit record for an action 

taken to attempt to recover the LPSK to 

a secure state. The input parameter is a 

pointer to the text token type that 

describes the action taken. 

 

unsigned int audit_write_SYS_failsecure( 

     audit_token_text_t *text_tokptr); 

Generate an audit record for the inability 

of the LPSK to return to a secure state 
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 after failure of a security function. The 

input parameter is a pointer to the text 

token type that describes the event. 

 

unsigned int audit_write_SYS_time( 

     audit_token_subject_t *sub_tokptr, 

     audit_token_argument_t *arg_tokptr, 

     audit_token_return_t *return_tokptr); 

 

Generate an audit record for changes to 

the LPSK time source. The input 

parameters are pointers to a subject 

token type, an argument token type that 

describes the argument provided for the 

change to the time source, and a return 

token type that indicates the return 

value. 

 

unsigned int audit_write_SYS_sak( 

     audit_token_partition_t *part_tokptr); 

 

Generate an audit record for the 

detection of a SAK invocation. The 

input parameter is a pointer to the 

partition token type that describes the 

partition. 

 

unsigned int audit_write_SYS_shut( 

     unsigned short evt_mod); 

 

Generate an audit record for the 

shutdown, powerdown or halt of a 

platform. An input argument of 0 

indicates a shutdown, 1 indicates a 

powerdown and 2 indicates a halt. 

 

unsigned int audit_write_DEV_read( 

     audit_token_subject_t *sub_tokptr, 

     audit_token_device_t *device_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when a read 

operation of a particular device is 

requested. The input parameters are 

pointers to a subject token type, a device 

token type and a return token type. 
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unsigned int audit_write_DEV_write( 

     audit_token_subject_t *sub_tokptr, 

     audit_token_device_t *device_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when a write 

operation of a particular device is 

requested. The input parameters are 

pointers to a subject token type, a device 

token type and a return token type. 

 

unsigned int audit_writeDEV_metaread( 

     audit_token_subject_t *sub_tokptr, 

     audit_token_device_t *device_tok, 

     audit_token_arg_t *arg_tok,  

     audit_token_return_t *return_tok); 

 

Generate an audit record when a read 

meta-data operation for a particular 

device is requested. The input 

parameters are pointers to a subject 

token type, a device token type, an 

argument token type and a return token 

type. 

 

unsigned int audit_write_DEV_metawrite( 

     audit_token_subject_t *sub_tokptr, 

     audit_token_device_t *device_tok, 

     audit_token_arg_t *arg_tok,  

     audit_token_return_t *return_tok); 

 

Generate an audit record when a write 

meta-data operation for a particular 

device is requested. The input 

parameters are pointers to a subject 

token type, a device token type, an 

argument token type and a return token 

type. 

 

unsigned int audit_write_DEV_mac( 

     audit_token_partition_t *part_tokptr, 

     audit_token_mac_t *mac_tok); 

 

Generate an audit record when duplicate 

MAC addresses are detected. The input 

parameters are pointers to a partition 

token type and a mac token type that 

contains the MAC address. 
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unsigned int audit_write_DEV_subread( 

     audit_token_subject_t *sub_tokptr, 

     audit_token_device_t *device_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when a device 

read is requested by a particular subject. 

The input parameters are pointers to a 

subject token type, a device token type 

and a return token type. 

 

unsigned int audit_write_DEV_subwrite( 

     audit_token_subject_t *sub_tokptr, 

     audit_token_device_t device_tok, 

     audit_token_return_t return_tok); 

 

Generate an audit record when a device 

write is requested by a particular subject. 

The input parameters are pointers to a 

subject token type, a device token type 

and a return token type. 

 

unsigned int audit_writeDEV_subconf( 

     audit_token_subject_t *sub_tokptr, 

     audit_token_device_t device_tok, 

     audit_token_arg_t arg_tok,  

     audit_token_return_t return_tok); 

 

Generate an audit record when a device 

configuration is requested by a particular 

subject. The input parameters are 

pointers to a subject token type, a device 

token type, an argument token type and 

a return token type. 

 

unsigned int audit_write_PRO_start( 

     audit_token_process_t *proc_tokptr); 

 

Generate an audit record for the success 

or failure of starting a process.  The 

input parameter is a pointer to a process 

token type. 

 

unsigned int audit_write_PRO_terminate( 

audit_token_process_t *proc_tokptr); 

 

Generate an audit record for the 

termination of a process.  The input 

parameter is a pointer to a process token 

type. 

 

unsigned int audit_write_PRO_sigsent( Generate an audit record when a signal 



 61

     audit_token_subject_t *subject_tok, 

     audit_token_signal_t *signal_tok, 

     audit_token_subject_t *subject_tok, 

     audit_token_return_t *return_tok); 

 

is sent by a particular subject. The input 

parameters are pointers to a sender 

subject token type, a signal token type, a 

recipient subject token type and a return 

token type. 

 

unsigned int audit_write_PRO_sigrecv( 

     audit_token_subject_t *subject_tok, 

     audit_token_signal_t *signal_tok, 

     audit_token_subject_t *subject_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when a signal 

is received by a particular subject. The 

input parameters are pointers to a 

recipient subject token type, a signal 

token type, a sender subject token type 

and a return token type. 

 

unsigned int audit_write_PRO_interrupt( 

     audit_token_subject_t *subject_tok, 

     audit_token_interrupt_t *interrupt_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when a 

software interrupt is invoked by a 

particular subject. The input parameters 

are pointers to a subject token type, an 

interrupt token type, and a return token 

type. 

 

unsigned int audit_write_MEM_dsegexceed( 

     audit_token_subject_t *subject_tok, 

     audit_token_dseg_t *dseg_tok); 

 

Generate an audit record when an 

attempt to swapin a dseg exceeded 

memory quota. The input parameters are 

pointers to a subject token type, and a 

dseg token type. 

  

 

unsigned int audit_write_MEM_msegexceed( 

     audit_token_subject_t *subject_tok, 

     audit_token_mseg_t *mseg_tok); 

Generate an audit record when an 

attempt to create a mseg exceeds the 

memory quota. The input parameters are 
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 pointers to a subject token type, and a 

mseg token type. 

 

unsigned int audit_write_MEM_swapin( 

     audit_token_subject_t *subject_tok, 

     audit_token_dseg_t *dseg_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when a 

particular segment is swapped in. The 

input parameters are pointers to a 

subject token type, a dseg token type 

and a return token type. 

 

unsigned int audit_write_MEM_flush( 

     audit_token_subject_t *subject_tok, 

     audit_token_dseg_t *dseg_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when a 

particular segment is flushed. The input 

parameters are pointers to a subject 

token type, a dseg token type and a 

return token type. 

 

unsigned int audit_write_MEM_swapout( 

     audit_token_subject_t *subject_tok, 

     audit_token_dseg_t *dseg_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when a 

particular segment is swapped out. The 

input parameters are pointers to a 

subject token type, a dseg token type 

and a return token type. 

 

unsigned int audit_write_MEM_msegcreate( 

     audit_token_subject_t *subject_tok, 

     audit_token_mseg_t *mseg_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when a mseg is 

created. The input parameters are 

pointers to a subject token type, a mseg 

token type and a return token type. 

unsigned int audit_write_SYN_procawait( 

     audit_token_subject_t *subject_tok, 

     audit_token_eventcount_t *evtcnt_tok, 

     audit_token_return_t *return_tok); 

Generate an audit record when a process 

awakes from an await on an eventcount. 

The input parameters are pointers to a 

subject token type, an eventcount token 
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 type and a return token type. 

 

unsigned int audit_write_SYN_ecadvance( 

     audit_token_subject_t *subject_tok, 

     audit_token_eventcount_t *evtcnt_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when an 

advance of an eventcount is requested. 

The input parameters are pointers to a 

subject token type, an eventcount token 

type and a return token type. 

 

unsigned int audit_write_SYN_ecread( 

     audit_token_subject_t *subject_tok, 

     audit_token_eventcount_t *evtcnt_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when a read of 

an eventcount is requested. The input 

parameters are pointers to a subject 

token type, an eventcount token type and 

a return token type. 

 

unsigned int audit_write_SYN_ecawake( 

     audit_token_subject_t *subject_tok, 

     audit_token_eventcount_t *evtcnt_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when an awake 

of an eventcount is requested. The input 

parameters are pointers to a subject 

token type, an eventcount token type and 

a return token type. 

 

unsigned int audit_write_SYN_ecwakeup( 

     audit_token_subject_t *subject_tok, 

     audit_token_eventcount_t *evtcnt_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when a wakeup 

on an eventcount is requested. The input 

parameters are pointers to a subject 

token type, an eventcount token type and 

a return token type. 

 

unsigned int audit_write_SYN_seqticket( 

     audit_token_subject_t *subject_tok, 

     audit_token_sequencer_t *seq_tok, 

     audit_token_return_t *return_tok); 

Generate an audit record when the ticket 

of a sequencer is requested by a 

particular subject. The input parameters 

are pointers to a subject token type, a 
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 sequencer token type and a return token 

type. 

 

unsigned int audit_write_SYN_subecread( 

     audit_token_subject_t *subject_tok, 

     audit_token_eventcount_t *evtcnt_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when a read of 

an eventcount is requested by a 

particular subject. The input parameters 

are pointers to a subject token type, an 

eventcount token type and a return token 

type. 

 

unsigned int audit_write_SYN_subecadvance( 

     audit_token_subject_t *subject_tok, 

     audit_token_eventcount_t *evtcnt_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when an 

advance of an eventcount is requested 

by a particular subject. The input 

parameters are pointers to a subject 

token type, an eventcount token type and 

a return token type. 

 

unsigned int audit_write_SYN_subecawait( 

     audit_token_subject_t *subject_tok, 

     audit_token_eventcount_t *evtcnt_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when an await 

on an eventcount is requested by a 

particular subject. The input parameters 

are pointers to a subject token type, an 

eventcount token type and a return token 

type. 

 

unsigned int audit_write_SYN_subseqticket( 

     audit_token_subject_t *subject_tok, 

     audit_token_sequencer_t *seq_tok, 

     audit_token_return_t *return_tok); 

 

Generate an audit record when the ticket 

of a sequencer is requested by a 

particular subject. The input parameters 

are pointers to a subject token type, a 

sequencer token type and a return token 

type. 
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A selection process was performed on the 46 auditable events to identify those 

that are potentially implementable in the current LPSK prototype and those events that 

are likely to occur during the execution of each process. Ten high priority interfaces were 

selected and fully implemented in the LPSK audit subsystem prototype. They include the 

following: 

 audit_write_INI_cv 

 audit_write_INI_complete 

 audit_write_SYS_auditstart 

 audit_write_SYS_lpskstart 

 audit_write_SYS_sak 

 audit_write_MEM_swapin 

 audit_write_MEM_msegcreate 

 audit_write_SYN_ecawait 

 audit_write_SYN_procawake 

 audit_write_SYM_seqticket 

2. Exported LPSK Audit Interfaces 

Table 14 describes the  interfaces that are provided to allow a non-kernel audit 

retrieval application to communicate with the audit subsystem. 

Table 14.   Exported LPSK Audit Interfaces 

Interfaces Description 
unsigned int audit_read_next( 

     unsigned short max_len,  

     unsigned char *buffer, 

     unsigned short *num_requested,  

     unsigned short *num_read); 

Reads the oldest records from the audit 

buffer and places them into the output 

parameter buffer (The number of records 

requested is indicated via num_requested, 

and the size of the buffer is indicated in 



 66

max_len). Returns the number of records 

placed inside buffer through num_read. If 

there are fewer than num_requested records 

in the Audit Buffer, then the available 

records are put into the buffer, and no error 

is returned. If there are num_requested 

records, but they would not all fit into 

buffer, then those that will fit will be put 

into buffer, and no error is returned. If there 

are no audit records to be obtained, then 

num_read is set to to indicate that the 

buffer is empty. 

 

unsigned int audit_read_buffer_size( 

     unsigned int *buffer_size); 

Reads the audit buffer size and places it 

into the output parameter buffer_size. 

 

unsigned int audit_read_num_rec( 

     unsigned int *num_rec); 

Returns the number of records in the audit 

buffer and places it into the output 

parameter num_rec. 

 

Unsigned int audit_read_num_generated( 

unsigned int *num_generated) 

Returns the total number of records 

generated during the current operational 

mode in the output parameter 

num_generated. This number will wrap-

around to zero if more than 232 audit 

records are generated in an operational 

mode. 

 

unsigned int audit_read_num_overwritten( 

     unsigned int *num_overwritten); 

Reads the number of records overwritten 

and places it into the output parameter 



 67

num_overwritten. This represents the 

number of audit records that have been 

overwritten during the current operational 

mode because the buffer was full when a 

new record was generated. This number 

will wrap-around to zero if more than 232 

audit records are overwritten in an 

operational mode. 

 

 

E. AUDIT BUFFER IMPLEMENTATION 

Audit records collected by the Audit Collector are first stored in an Audit Buffer, 

then they may be read by an authorized Audit Retrieval subject, which may save them on 

a secondary storage device. Because the size of the Audit Buffer is limited, records that 

have been read by the Audit Retrieval subject need to be deleted from the Audit Buffer to 

free up space for new records.  

Because records will be deleted as they are read, and new records will be added as 

space allows, it was determined that the Audit Buffer should be implemented using the 

abstract data type of a circular buffer. A circular buffer is a First-In-First-Out (FIFO) 

queue which means that the oldest record will be read first. The size of the Audit Buffer 

is specified in the configuration vector and a memory segment of that size is allocated to 

the Audit Buffer during the audit subsystem initialization phase. 

The circular buffer is implemented as an array of bytes inside the memory 

segment. Two indices are used to keep track of where the oldest record starts, and where 

the newest record ends:  first and last. These two variables mark the start and end of the 

queue respectively. A new audit record is added to the end of the queue, at the location 

referenced by the last index, which is then incremented to point to the end of the new 

record. When the last index reaches the end of the allocated memory segment, it will 
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“wrap around” and move to the beginning of the memory segment. An audit record is 

read from the start of the queue marked by the first index, which is then modified to point 

to the next record in the queue.   

When the audit retrieval application attempts to read an empty buffer, i.e. when 

first and last indices point to the same location, the audit subsystem will return zero bytes 

of data read to the calling application to indicate that audit buffer is empty. When the 

LPSK modules attempt to write to a full buffer, i.e. when incrementing last index will 

cause it to point to the same location as first index, the audit subsystem will either 

overwrite the oldest record, halt or shutdown. The behavior can be configured in the 

configuration vector. 

 When the audit subsystem overwrites an audit record, it will first increment the 

first index by the amount equal to the length of the oldest record and thus makes it point 

to the second oldest record. In this way, it effectively discards the oldest record and 

allows a new record to overwrite the space used by the oldest record. It is possible that 

the newest record is larger than the oldest record, which may cause more than one record 

to be overwritten.   

Two more variables, record_num and overwritten_num, are used to keep track of 

the number of records in the buffer and the number of records that have been overwritten 

respectively. They are updated whenever records are read, written or overwritten. The 

audit retrieval application can query the audit subsystem for the values of these variables 

through kernel APIs. Each variable is stored using a 32-bit unsigned integer, which will 

roll over to zero when the maximum value is reached. It is the responsibility of the audit 

retrieval application to take the necessary actions to deal with rollover. 
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V. TESTING  

This chapter consists of two parts: The first part describes the developmental 

testing of the individual audit subsystem interfaces. The second part describes the 

acceptance testing of the entire audit subsystem to meet the requirements stipulated in 

Chapter III. 

A. DEVELOPMENTAL TESTING 

The purpose of the developmental testing is to ensure that each interface of the 

LPSK audit subsystem behaves in the way intended by design.  

1. Testing of Interfaces to Kernel Modules 

Tables 15 through 25 show the test suite for the APIs provided by the audit 

subsystem to other LPSK modules to allow them to write audit records to the Audit 

Buffer. Eleven of the internal APIs are implemented for this research. The functions were 

tested independently of each other after the initialization of the audit subsystem. Test 

code was inserted into the LPSK modules to invoke the functions using different input 

arguments and sometimes under different conditions. Debugging messages were 

generated to provide a mean of verifying the outcome.   

The Test ID column in each of the tables provides a unique identifier for each test 

case. The test cases can be classified into two different types: functional and exception. A 

functional test type describes a normal use case where the action is designed to verify the 

successful invocation of a function call to accomplish certain tasks. An exception test 

type describes a test case were the action is designed to cause errors within specific 

components of the audit subsystem. The purpose of these tests is to verify that the audit 

subsystem is able to handle exceptions and exhibits expected behavior under such 

circumstances.  The Action column gives a summary of the actions performed during the 

test, and preconditions for the test cases are described where applicable. The Expected 

Result column describes the expected behavior of the component for each test case. 
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Table 15.   Function Test for audit_enabled 

audit_enabled 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F1-1 Functional Call function when 

audit is not enabled 

FALSE is returned Pass 

F1-2 Exception Call function when 

audit is enabled 

TRUE is returned Pass 

 

Table 16.   Function Test for audit_write_INI_cv 

audit_write_INI_cv 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F2-1 Functional Call function when audit 

is enabled. Provide valid 

input arguments. 

AUD_NO_ERR is returned. 

Record is successfully written to 

the Audit Buffer.  

Pass 

F2-2 Exception Call function when audit 

is disabled 

AUD_ERR_DISABLED error 

code is returned 

Pass 

F2-3 Exception Provide null pointer as 

arguments 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 

F2-4 Exception Set the length of 

descriptive text to 0 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 
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Table 17.   Function Test for audit_write_INI_complete 

audit_write_INI_complete 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F3-1 Functional Call function when audit 

is enabled. 

AUD_NO_ERR is returned. Record 

is successfully written to the Audit 

Buffer. 

Pass 

F3-2 Exception Call function when audit 

is disabled. 

AUD_ERR_DISABLED error code 

is returned 

Pass 

 

Table 18.   Function Test for audit_write_SYS_auditstart 

audit_write_SYS_auditstart 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F4-1 Functional Call function when audit is 

enabled. Event modifier is 

set to 

AUD_MOD_START 

AUD_NO_ERR is returned. Record 

is successfully written to the Audit 

Buffer. 

Pass 

F4-2 Functional Call function when audit is 

enabled. Event modifier is 

set to 

AUD_MOD_SHUTDOW

N 

AUD_NO_ERR is returned. Record 

is successfully written to the Audit 

Buffer. 

Pass 

F4-3 Exception Call function when audit is 

enabled. Provide invalid 

event modifier. 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 

F4-4 Exception Call function when audit is 

disabled. 

AUD_ERR_DISABLED error code 

is returned 

Pass 
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Table 19.   Function Test for audit_write_SYS_lpskstart 

audit_write_SYS_lpskstart 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F5-1 Functional Call function when audit 

is enabled. 

AUD_NO_ERR is returned. 

Record is successfully written to 

the Audit Buffer. 

Pass 

F5-2 Exception Call function when audit 

is disabled. 

AUD_ERR_DISABLED error 

code is returned 

Pass 

 

Table 20.   Function Test for audit_write_SYS_sak 

audit_write_SYS_sak 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F6-1 Functional Call function when audit 

is enabled. Provide valid 

input arguments. 

AUD_NO_ERR is returned. 

Record is successfully written to 

the Audit Buffer. 

Pass 

F6-2 Exception Call function when audit 

is disabled. 

AUD_ERR_DISABLED error 

code is returned 

Pass 

F6-3 Exception Provide null pointer as 

arguments 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 

F6-4 Exception Provide an out of bound  

partition ID as argument 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 
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Table 21.   Function Test for audit_write_MEM_swapin 

audit_write_MEM_swapin 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F7-1 Functional Call function when audit 

is enabled. Provide valid 

input arguments. 

AUD_NO_ERR is returned. 

Record is successfully written to 

the Audit Buffer. 

Pass 

F7-2 Exception Call function when audit 

is disabled. 

AUD_ERR_DISABLED error 

code is returned 

Pass 

F7-3 Exception Provide null pointer as 

arguments 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 

F7-4 Exception Set dseg path length 

input argument to 0 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 

Table 22.   Function Test for audit_write_MEM_msegcreate 

audit_write_MEM_msegcreate 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F8-1 Functional Call function when audit 

is enabled. Provide valid 

input arguments. 

AUD_NO_ERR is returned. 

Record is successfully written to 

the Audit Buffer. 

Pass 

F8-2 Exception Call function when audit 

is disabled. 

AUD_ERR_DISABLED error 

code is returned 

Pass 

F8-3 Exception Provide null pointer as 

arguments 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 

F8-4 Exception Provide an out of bound 

mseg ID as argument 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 
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Table 23.   Function Test for audit_write_SYN_ecawake 

audit_write_SYN_ecawake 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F9-1 Functional Call function when audit 

is enabled. Provide valid 

input arguments. 

AUD_NO_ERR is returned. 

Record is successfully written to 

the Audit Buffer. 

Pass 

F9-2 Exception Call function when audit 

is disabled. 

AUD_ERR_DISABLED error 

code is returned 

Pass 

F9-3 Exception Provide null pointer as 

arguments 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 

F9-4 Exception Provide an out of bound 

eventcount ID as 

argument 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 
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Table 24.   Function Test for audit_write_SYN_procawait 

audit_write_SYN_procawait 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F10-1 Functional Call function when 

audit is enabled. 

Provide valid input 

arguments. 

AUD_NO_ERR is returned. 

Record is successfully written to 

the Audit Buffer. 

Pass 

F10-2 Exception Call function when 

audit is disabled. 

AUD_ERR_DISABLED error 

code is returned 

Pass 

F10-3 Exception Provide null pointer as 

arguments 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 

F10-4 Exception Provide an out of bound 

eventcount ID as 

argument 

AUD_ERR_INVALID_PARAM 

error code is returned 
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Table 25.   Function Test for audit_write_SYN_seqticket 

audit_write_SYN_seqticket 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F11-1 Functional Call function when 

audit is enabled. 

Provide valid input 

arguments. 

AUD_NO_ERR is returned. 

Record is successfully written to 

the Audit Buffer. 

Pass 

F11-2 Exception Call function when 

audit is disabled. 

AUD_ERR_DISABLED error 

code is returned 

Pass 

F11-3 Exception Provide null pointer as 

arguments 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 

F11-4 Exception Provide an out of bound 

sequencer ID as 

argument 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 

 

2. Testing of Exported Interfaces to Audit Retrieval 

Tables 26 through 30 describe the testing of the functions exported by the audit 

subsystem to authorized subjects. A test application residing in PL3 was created to 

facilitate the testing. The API calls were invoked from the test application and the results 

were displayed on the screen for verification. 
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Table 26.   Function Test for audit_read_next 

audit_read_next 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F12-1 Functional Call function when 

audit is enabled. 

Request to read 1 

record from the Audit 

Buffer. 

AUD_NO_ERR is returned. 

Record is successfully read from 

the Audit Buffer. Number of 

records read is correctly returned 

via the output parameter. 

Pass 

F12-2 Functional Call function when 

audit is enabled. 

Request to read 

multiple records from 

the Audit Buffer. 

AUD_NO_ERR is returned. 

Records are successfully read 

from the Audit Buffer. Number 

of records read is correctly 

returned via the output 

parameter. 

Pass 

F12-3 Exception Call function when 

audit is disabled. 

AUD_ERR_DISABLED error 

code is returned 

Pass 

F12-4 Exception Provide null pointer as 

argument 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 

F12-5 Exception Provide a buffer size 

that is smaller than the 

record length.  

AUD_ERR_SIZE_EXCEED 

error code is returned 

Pass 

F12-6 Exception Request to read 1 

record when the Audit 

Buffer is empty.   

A value of 0 is returned for 

number of records read. 

AUD_ERR_BUF_EMPTY error 

code is also returned. 

Pass 

F12-7 Functional Request to read more All the records in the Audit Pass 
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records than is in the 

Audit Buffer. (E.g. 

Request to read 3 

records when there is 

only 2 record in the 

Audit Buffer)  

Buffer are read. Number of 

records read is correctly returned 

via the output parameter.  

F12-8 Functional Request to read more 

than 1 record but the 

size of the buffer is not 

enough to receive all 

the records requested. 

Records that will fit into the 

buffer are read. Number of 

records read is correctly returned 

via the output parameter. 

 

 

Table 27.   Function Test for audit_read_buffer_size 

audit_read_buffer_size 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F13-

1 

Functional Call function when 

audit is enabled. Provide 

valid argument to store 

size of Audit Buffer. 

AUD_NO_ERR is returned. Size 

of Audit Buffer is correctly 

returned via the output 

parameter. 

Pass 

F13-

2 

Exception Call function when 

audit is disabled. 

AUD_ERR_DISABLED error 

code is returned 

Pass 

F13-

3 

Exception Provide null pointer as 

argument 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 
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Table 28.   Function Test for audit_read_num_rec 

audit_read_num_rec 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F14-1 Functional Call function when 

audit is enabled. 

Provide valid argument 

to store the number of 

records in the Audit 

Buffer. 

AUD_NO_ERR is returned. 

Number of records in the Audit 

Buffer is correctly returned via 

the output parameter. 

Pass 

F14-2 Exception Call function when 

audit is disabled. 

AUD_ERR_DISABLED error 

code is returned 

Pass 

F14-3 Exception Provide null pointer as 

argument 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 
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Table 29.   Function Test for audit_read_num_generated 

audit_read_num_generated 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F15-1 Functional Call function when 

audit is enabled. 

Provide valid argument 

to store total number of 

records generated. 

AUD_NO_ERR is returned. 

Total number of records 

generated is correctly returned 

via the output parameter. 

Pass 

F15-2 Exception Call function when 

audit is disabled. 

AUD_ERR_DISABLED error 

code is returned 

Pass 

F15-3 Exception Provide null pointer as 

argument 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 
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Table 30.   Function Test for audit_read_num_overwritten 

audit_read_num_overwritten 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

F16-1 Functional Call function when 

audit is enabled. 

Provide valid argument 

to store total number of 

records already 

overwritten. 

AUD_NO_ERR is returned. 

Total number of records 

overwritten is correctly returned 

via the output parameter. 

Pass 

F16-2 Exception Call function when 

audit is disabled. 

AUD_ERR_DISABLED error 

code is returned 

Pass 

F16-3 Exception Provide null pointer as 

argument 

AUD_ERR_INVALID_PARAM 

error code is returned 

Pass 

 

3. Testing of Audit Buffer 

Table 31 describes additional testing performed on the Audit Buffer. The correct 

implementation of the Audit Buffer provides assurance that audit records will not be 

accidentally modified or deleted during read or write operations. 



 82

Table 31.   Test for Audit Buffer 

Test 

ID 

Test Type Action Expected Result Pass /  

Fail 

AB-1 Functional Add and retrieve a 

record to/from the 

Audit Buffer one at a 

time. Iterate this 

process until the read / 

write process “wraps 

around” the Audit 

Buffer a few times.   

Audit records successfully 

written and read from the Audit 

buffer. 

Pass 

AB-2 Exception Add an audit record to 

the Audit Buffer when 

it is full, such that the 

newest record is of a 

different type than the 

record to be 

overwritten. (Audit 

Buffer is configured to 

overwrite old records.)  

The oldest audit record is 

overwritten. The number of 

records overwritten and the 

number of records in the Audit 

Buffer is updated. Retrieve all 

the audit records and verify that 

that last record returned is the 

one that overwrote the oldest 

record. 

Pass 

 

The developmental testing proved to be very useful as a number of bugs were 

detected. Bugs related to the Audit Buffer were especially difficult to detect because they 

occur intermittently and are difficult to replicate. To make matters worse, the debugging 

process is very time consuming as every time a change is made, the files must be 

transferred from the development virtual machine to the test virtual machine and the test 

virtual machine must then be rebooted. 
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Nevertheless, Developmental testing has helped to provide a systematic way to 

isolate problems. All the bugs that were found were successfully corrected. The test was 

re-run successfully and no additional problem was found.  

B. ACCEPTANCE TESTING 

The purpose of the acceptance testing is to ensure the proper functioning of the 

audit subsystem to support the audit requirements of LPSK. The LPSK kernel source 

code was modified to generate various audit events. It was compiled together with the 

audit subsystem modules. The configuration vector was configured to create eventcounts, 

sequencers,  msegs and dsegs for the purpose of  audit record generation testing. After 

successful initialization, the LPSK modules start to invoke function calls to the audit 

subsystems to record the audit events.  

A test application was also created to read the audit records from the Audit 

Buffer. The test application provides the user with a menu interface to select different 

types of requests to the audit subsystem. A user can use the menu to retrieve audit records 

from the Audit Buffer. Because the LPSK does not support a secondary storage device 

driver in the current prototype implementation, the test application creates another buffer 

to simulate a secondary storage device. Retrieved audit records are stored in this buffer. 

The test application can also read and display the audit records on the console. This 

allows manual inspection of the audit records to verify that audit event information is 

correctly captured in the record.  

Table 32 describes the acceptance tests performed when audit is enabled. The 

actions are designed to systematically trigger the audit events implemented in this study. 
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Table 32.   Acceptance Tests when Audit is Enabled 

Test 

ID 

Action Expected Result Pass /  

Fail 

A-1 Boot up LPSK. Start the audit 

test application. Request for 

the number of audit records 

in the Audit Buffer. 

Audit subsystem correctly returns the 

number of records generated 

Pass 

A-2 After doing A-1, request to 

read an audit record from the 

Audit Buffer, followed by a 

request for the number of 

audit records. Repeat until 

Audit Buffer is empty. 

Audit records are successfully  read 

from the Audit Buffer. The number of 

audit records in the Audit Buffer is 

decremented by 1 after each retrieval. 

Pass 

A-3 Reboot the LPSK and go to 

the audit testing partition. 

Display and verify the audit 

records.  

Audit records for the following events 

are successfully returned. 

 start of LPSK audit subsystem 

 identifying information of the 

configuration vector 

 Swap in of a dseg defined in the 

configuration vector 

 Creation of a mseg defined in 

the configuration vector 

 Successful completion of LPSK 

initialization 

 Successful startup of LPSK 

runtime. 

Pass 
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Correct timestamp is attached to each 

record. CRC32 checksum is verified for 

each record. 

A-4 Verify that the audit buffer is 

empty, then invoke a SAK 

and then return to the audit 

testing partition. Read the 

audit record. 

Audit record is returned for the 

detection of SAK 

Pass 

A-5 Verify that the audit buffer is 

empty, then request the ticket 

of a sequencer. (Test 

application has read and write 

permission to the sequencer) 

Audit record (for success) is returned 

for this event. 

Pass 

A-6 Verify that the audit buffer is 

empty, then request an await 

on an eventcount. (Test 

application has read and write 

permission to the eventcount) 

Audit record (for success) is returned 

for this event. 

Pass 

A-7 Verify that the audit buffer is 

empty, then advance the 

eventcount mentioned in A-6. 

(Test application has read and 

write permission to the 

eventcount) 

Audit record (for success) is returned 

when the process wake from an await on 

eventcount. 

Pass 

A-8 Verify that the audit buffer is 

empty, then request the ticket 

of a sequencer. (Test 

application does not have 

Audit record (for failure) is returned for 

this event. 

Pass 
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read and write permission to 

the sequencer) 

A-9 Verify that the audit buffer is 

empty, then request an await 

on an eventcount. (Test 

application does not have 

read and write permission to 

the eventcount) 

Audit record (for failure) is returned for 

this event. 

Pass 

A-10 Keep invoking the SAK to 

generate enough records to 

fill up the Audit Buffer. 

Audit records are generated. Old records 

are overwritten by new ones when the 

Audit Buffer is full. Number of audit 

records being overwritten is updated. 

Pass 

 

Table 33 describes the acceptance tests performed when audit is disabled. The 

purpose of this test is to ensure that LPSK continues to function properly when audit is 

disabled. 

Table 33.   Acceptance Tests when Audit is Disabled 

Test 

ID 

Action Expected Result Pass /  

Fail 

B-1 Boot up LPSK. Start the 

audit test application. 

Request for the number of 

audit records in the buffer. 

No audit record generated. Pass 

B-2 Request to read an audit 

record from the Audit Buffer. 

No audit record in the Audit Buffer. Pass 

B-3 Perform the tasks described 

in A-4 to A-10 in Table 31  

No audit record is returned. Pass 
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The acceptance tests were successful. No bugs were found during acceptance 

testing because the functional and exception tests appear to have identified all the bugs. 

Detailed test procedures and results are provided in the Appendix. 
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VI. CONCLUSION  

This study explored the best way to design and implement an audit subsystem for 

the LPSK. The first step was to gather the audit requirements that were sprinkled 

throughout the LPSK functional specifications and SKPP.  

From these requirements, a list of auditable events was created. It was determined 

that the information required to describe and record each event differs a lot. Some events 

require more attributes to describe them than others. This means that the size of the audit 

records could vary. Due to the fact that managing varying length records adds 

considerable amount of complexity to the implementation, the idea of allocating a 

maximum fixed size for each record was initially explored. In general, such an approach 

would result in inefficient use of limited memory space. A varying length token based 

record format was found to be the better solution for LPSK audit records. The highly 

structured nature of the tokens helps to relieve the difficulties in managing varying length 

records. 

Audit interfaces were defined to allow LPSK modules to send audit information 

to the audit subsystem and to allow an authorized application to retrieve audit records. 

The design is based on the assumption that only one authorized application retrieves 

records from the audit subsystem. No use case has been identified so far that would 

involve having multiple applications concurrently reading records from the Audit Buffer. 

After the audit interfaces were defined, an LPSK audit module was designed to 

manage the audit buffers and other audit metadata. Because of the specified nature of the 

audit subsystem, it was determined that the best abstract data structure for managing the 

records was a circular buffer, which would allow old records to be read from  one side of 

the buffer, and allow new records to be added to the other side of the buffer. 

A prototype audit subsystem was developed to test out the design. Development 

and testing was time consuming due to the fact that every run of the code involves 

transferring compiled binaries from the development virtual machine to the testing virtual 

machine. When the LPSK is initializing, there is not much feedback on the status of the 
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audit subsystem to know whether things are going right. A debugger, such as the 

VMware Vprobes [19], would have been helpful in troubleshooting the code at the kernel 

level. However, Vprobes requires developers to write scripts to collect the data they want 

to investigate. This creates a learning curve for developers who are unfamiliar with 

Vprobes scripts. Furthermore, the lack of a LPSK disk device driver means that currently 

it is not possible to write debug logs to a secondary storage device. The workaround was 

to strategically place function calls to print debug messages to the screen and pause the 

initialization to be able to see the messages before they are overwritten by other 

messages.  

Testing was conducted and problems were found due to incorrect implementation 

of the operations to read and write records to the audit buffer. The bugs were corrected 

and subsequent testing was completed successfully.  

A. RELATED WORK 

This section introduces related work on separation kernel audit subsystems. Green 

Hills’ INTEGRITY-178 Operating Systems [20] was the first separation kernel to be 

certified compliant with the SKPP. Its audit subsystem bears close resemblance to the one 

implemented in this study due to the fact that both INTEGRITY-178 and LPSK draw 

their audit requirements from the SKPP. 

The INTEGRITY-178’s audit event log is stored using a circular buffer in kernel 

memory. Once read, the audit record is removed from the circular buffer. The oldest 

record will be overwritten when the buffer fills up. This implementation is very similar to 

the LPSK’s implementation. The main difference is that the INTEGRITY-178 abstracts 

the circular buffer as an I/O device object. Accesses to the I/O devices are configured 

using static configuration files. No information regarding the format of the audit records 

for INTEGRITY-178 is available. 

The LynxSecure Embedded Hypervisor by LynuxWorks [21] and VxWorks by 

Wind Rivers Systems [22] are another two separation kernels undergoing certification to 

be compliant with SKPP. However, there was no information available about their 

implementations of the audit subsystems.   
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B. FUTURE WORK 

This section presents some recommendations for future work.  

1. Abstraction of Audit Subsystem as a Device 

Before finding the related work from Green Hills, it was already suggested that 

future work could look into the possibility of abstracting the audit interface like a device. 

The interface to the audit subsystem is very similar to a device interface, especially to an 

asynchronous read-only device like a keyboard. Both are using internal buffers to store 

data while exporting a set of kernel APIs to allow external applications to obtain the 

buffered information. The following are the potential benefits to this abstraction: 

 Access control to the audit API can be controlled in the same way the devices 

are controlled. 

 The audit metadata can be made available through the device CONTROL 

interface. 

 The number of kernel APIs is reduced, thus reducing kernel complexity. 

2. Audit Review 

This study has focused on the design of an audit subsystem to generate and collect 

audit events within the LPSK, and to provide an interface to allow authorized subjects to 

extract audit records from the kernel and store them on secondary storage for future 

review.  While a token-based audit record format is suitable within the LPSK, it may not 

be the ideal format for human review. The overall audit system would not be complete 

without providing an effective way for the administrator to review the audit records. A 

detailed study needs to be done to look at the best way to store, process and present the 

records to the administrator. This would also include exploring how records will be put 

into, and retrieved from, a secondary storage device.   

3. Performance Study 

In this study, it was decided that as long as audit is enabled, the LPSK modules 

will always send event information to the audit subsystem when a potential auditable 
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event has occurred. The audit subsystem checks the audit policy to decide whether the 

event should be recorded. While this approach is simple, a potential performance penalty 

may be incurred if a large portion of the events sent to the audit subsystem do not need to 

be audited. A study to assess the performance impact of such an approach is needed in 

order to determine the best way to perform the audit policy checking.   

4. Implementation of Unfinished Work 

Due to the fact that the LPSK prototype is currently incomplete, several of the 

audit subsystem features were not implemented in this work. The following is a list of 

work that needs to be done when the prototype is more fully developed: 

 Initialize the audit subsystem based on the configuration read from the 

configuration vector. This includes behavior of the circular buffer when it is 

full and advanced filtering rules for selective auditing of events based on 

attributes, which include subject identity, resource identity, event type, and 

success or failure of particular events. 

 Modify the header token to accept timestamps with finer granularity. The 

current LPSK prototype uses epoch time that can only measure to a 

granularity of one second, But it is expected that a future version of the LPSK 

will provide more granularity. 

 Implement auditing of all 46 auditable events identified in this study. 

C. CONCLUSION 

The LPSK provides a high assurance platform that could potentially be used to 

protect sensitive data in both public and private sectors. In order to ensure that 

accountability policies are being enforced correctly, and that no one is abusing their 

privileged access, there is a need for a mechanism to allow administrators to regularly 

review events. The audit subsystem prototype developed in this study has demonstrated a 

working mechanism to efficiently collect audit records and transfer them to an authorized 

application, which will then store or process these records for viewing by an 
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administrator.  Even though the audit prototype is not yet a complete implementation, it 

provides a good environment to study the various features of the audit design.  
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APPENDIX 

This appendix describes the test procedures for the test plan used in Chapter V. 

A. DEVELOPMENTAL TESTING 

Conditional test code was added to the LPSK modules to help to test the functions 

exported by the audit subsystem. The test code  invokes the audit functions using 

different input arguments and sometimes under different conditions, prints debug 

messages and displays values to the screen. To enable the test code, do the following: 

1. Find the line “wcc386 kernel_ini2.c $(INC) $(CC_OPTS)” in the Makefile 

and append the debug option “-DDEBUG_AUDIT_DEV” to the end of the 

line.  

2. Uncomment the line “#define AUDIT_ENABLED 1” and comment the line 

“#define AUDIT_ENABLED 0” in the lpsk_audit.h file to enable audit. 

3. Compile the LPSK code with the new Makefile.  

4. Copy the compiled binary to the test VM and power it on.  

After completing the above, the test code performs tests on various function calls 

and prints the results to the screen. Table 34 describes the expected results for the tests 

described in Chapter V when the audit is enabled. The function return code of 

AUD_NO_ERR is defined as 0 and AUD_ERR_INVALID_PARAM is defined as 1. 

Table 34.   Testing Results of Interfaces to Kernel Modules when Audit is Enabled 

Test ID Expected Results Summary 

F1-1 F1-1: Return code = 1 

F2-1 F2-1: Return code = 0 

F2-3 F2-3: Return code = 1 

F2-4 F2-4: Return code = 1 
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F3-1 F3-1: Return code = 0 

F4-1 F4-1: Return code = 0 

F4-2 F4-2: Return code = 0 

F4-3 F4-3: Return code = 1 

F5-1 F5-1: Return code = 0 

F6-1 F6-1: Return code = 0 

F6-3 F6-3: Return code = 1 

F6-4 F6-4: Return code = 1 

F7-1 F7-1: Return code = 0 

F7-3 F7-3: Return code = 1 

F7-4 F7-4: Return code = 1 

F8-1 F8-1: Return code = 0 

F8-3 F8-3: Return code = 1 

F8-4 F8-4: Return code = 1 

F9-1 F9-1: Return code = 0 

F9-3 F9-3: Return code = 1 

F9-4 F9-4: Return code = 1 

F10-1 F10-1: Return code = 0 

F10-3 F10-3: Return code = 1 

F10-4 F10-4: Return code = 1 

F11-1 F11-1: Return code = 0 

F11-3 F11-3: Return code = 1 

F11-4 F11-4: Return code = 1 
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Disable audit by doing the following: 

1. Commenting the line “#define AUDIT_ENABLED 1”  

2. Uncommenting the line “#define AUDIT_ENABLED 0” in the lpsk_audit.h 

file.  

3. Compile the LPSK code.  

4. Copy the binary to the test VM and power it on.  

Table 35 describes the expected results for the tests described in Chapter V when 

the audit is disabled. The function return code of AUD_ERR_DISABLED is defined as 

2. 

Table 35.   Testing Results of Interfaces to Kernel Modules when Audit is Disabled 

Test ID Expected Results Summary 

F1-2 F1-1: Return code = 0 

F2-2 F2-1: Return code = 2 

F3-2 F3-2: Return code = 2 

F4-4 F4-4: Return code = 2 

F5-2 F5-2: Return code = 2 

F6-2 F6-2: Return code = 2 

F7-2 F7-2: Return code = 2 

F8-2 F8-2: Return code = 2 

F8-3 F8-3: Return code = 2 

F8-4 F8-4: Return code = 2 

F9-2 F9-2: Return code = 2 

F10-2 F10-2: Return code = 2 
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F11-2 F11-2: Return code = 2 

 

To test the functions exported by the audit subsystem to authorized subjects, take 

the following steps: 

1. Set the size of the Audit Buffer to 1024 bytes via the AUDIT_BUFF_SIZE 

constant defined in lpsk_audit.h. Enable audit by setting the 

AUDIT_ENABLED constant in lpsk_audit.h to TRUE. Compile the code 

with “-DDEBUG_AUDIT_DEV” to generate audit events in the Audit Buffer 

for testing. 

2. Boot the Test Virtual Machine and login to Trusted Path Application 

3. Select “F – Change Partition Focus” option from the menu 

4. Select “1 – Audit Application” option from the menu 

5. From the main menu of the audit test application perform the steps shown in 

the “Menu Selection / Action” column of Table 36. The “Expected Results 

Summary” column shows the expected message displayed by the test 

application after each step has been performed. 

Table 36.   Testing Results of Interfaces to Audit Retrieval when Audit is Enabled 

Test ID Menu Selection / Action Expected Results Summary 

F13-1 Select “3 – Query size of audit buffer” Size of audit buffer = 1024 

Return code = 0 

(Remarks: return code 0 = 

AUD_NO_ERR) 

F14 -1 Select “4 – Query number of records in 

the Audit Buffer” 

Number of records in the buffer = 

19 

Return code = 0 
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F12-1 Select “1 – Retrieve records”. Enter “1” 

when asked to enter the number of 

records to retrieve. 

Number of records read = 1 

Return code = 0 

 

F12-2 Select “1 – Retrieve records”. Enter “3” 

when asked to enter the number of 

records to retrieve. 

Number of records read = 3 

Return code = 0 

 

F12-7 Retrieve 13 more records and leave 2 in 

the Audit Buffer. Select “1 – Retrieve 

records”. Enter “3” when asked to enter 

the number of records to retrieve. 

Number of records read = 2 

Return code = 0 

F12-8 Press “Alt-Esc” to generate a SAK, and 

then change the partition focus back to the 

audit application. Repeat the above 

mentioned action 5 times to generate 6 

SAK events in the Audit Buffer. Select “1 

– Retrieve records”. Enter “6” when 

asked to enter the number of records to 

retrieve. 

Number of records read = 5 

Return code = 0 

(Remarks: the size of the buffer 

provided by the test application is 

128 bytes, which is only enough 

to hold 5 SAK events of 22 bytes 

each) 

F12-4 

F12-5 

F13-3 

F14-3 

F15-3 

F16-3 

Select “7 – Exception Testing” F12-4: Return code = 1 

F12-5: Return code = 5 

F13-3: Return code = 1 

F14-3: Return code = 1 

F15-3: Return code = 1 

F16-3: Return code = 1 

(Remarks: Return code 1 = 

AUD_ERR_INVALID_PARAM;
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Return code 5 = 

AUD_ERR_SIZE_EXCEED) 

F15-1 Select “6 – Query total number of records 

generated” 

Number of records generated = 

25 

Return code = 0 

F16-1 Select “5 – Query number of overwritten 

records” 

Number of records overwritten = 

0 

Return code = 0 

To perform the tests when audit is disabled, do the following: 

1. Disable audit by setting the AUDIT_ENABLED constant in lpsk_audit.h to 

FALSE.  

2. Recompile the code and boot up the Test Virtual Machine.  

3. Navigate to the audit test application main menu.  

4. Perform the steps shown in the “Menu Selection / Action” column of Table 

37. 

Table 37.   Testing Results of Interfaces to Audit Retrieval when Audit is Disabled 

Test ID Menu Selection / Action Expected Results Summary 

F12-3 Select “1 – Retrieve records”. Enter “1” 

when asked to enter the number of records 

to retrieve. 

Return code = 2 

(Remarks: return code 2 = 

AUD_ERR_DISABLED) 

F13-2 Select “3 – Query size of audit buffer” Return code = 2 

F14-2 Select “4 – Query number of records in the 

Audit Buffer” 

Return code = 2 

F15-2 Select “6 – Query total number of records Return code = 2 
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generated” 

F16-2 Select “5 – Query number of overwritten 

records” 

Return code = 2 

 

B. ACCEPTANCE TESTING 

The acceptance tests verified that audit records are generated for a set of 

predefined events. The configuration vector needs to be configured to ensure that mseg, 

dseg, sequencer and eventcount events are successfully generated during the acceptance 

tests. Perform the following steps: 

1. Insert the following lines in the LPSK initialization database file all_apps.pl0.  

a. EVENTCOUNT = {"Event  0",  3,  RW, RW, NA, RW, RW }; 

b. SEQUENCER = {"Seq  0",  3,  RW, RW, NA, RW, RW }; 

2. Insert the following lines in the PL3 initialization database file all_apps.pl3 

a. MSEG[0] = { 40000, 1, RW, RW, NA, RO, RO }; 

3. Create the configuration vector using the command line “vector -0 all_aps.pl0 

-1 five_part.pl1 -2 five_part.pl2 -3 all_apps.pl3 –o all_apps” 

4. Re-enable audit by setting the AUDIT_ENABLED constant in lpsk_audit.h to 

TRUE. 

5. Compile the code without the debug option.  

6. Boot the Test Virtual Machine and navigate to the audit test application main 

menu. Perform the steps shown in the “Menu Selection / Action” column of 

Table 38. 
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Table 38.   Results of Acceptance Testing (Successful Events) 

Test ID Menu Selection / Action Expected Results Summary 

A-1 Select “4 – Query number of records in the 

Audit Buffer” 

Number of records in the buffer 

= 8 

Return code = 0 

A-2 Select “1 – Retrieve records”. Enter “1” 

when asked to enter the number of records 

to retrieve. 

 

 

Number of records read = 1 

Return code = 0 

 

 

 Select “4 – Query number of records in the 

Audit Buffer” 

Number of records in the buffer 

= 7 

Return code = 0 

 Repeat A-2 until buffer is empty The number of records in the 

Audit Buffer is decremented by 

1 after each retrieval. 

A-3 Select “2 – View records” to display and 

manually inspect the audit records 

Content of the audit records for 

the following events 

 start of LPSK audit 

subsystem 

 identifying information 

of the configuration 

vector 

 Swap in of 2 dsegs 

defined in the 

configuration vector 
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 Creation of 2 msegs 

defined in the 

configuration vector 

 Successful completion 

of LPSK initialization 

 Successful startup of 

LPSK runtime. 

A-4 Select “4 – Query number of records in the 

Audit Buffer” 

Number of records in the buffer 

= 0 

Return code = 0 

 Press “Alt-Esc” to generate a SAK, and 

then change the partition focus back to the 

audit application. 

Select “1 – Retrieve records”. Enter “1” 

when asked to enter the number of records 

to retrieve. 

 

Number of records read = 1 

Return code = 0 

 

 Select “2 – View records” to display and 

manually inspect the audit records 

Content of the audit record for 

the SAK event 

A-5 Select “4 – Query number of records in the 

Audit Buffer” 

Number of records in the buffer 

= 0 

Return code = 0 

  Press “Alt-Esc” to generate a SAK, and 

then change the partition focus to “3 – 

Test Application”.  

 Select “A – Test eventcounts and 

Number of records read = 4 

Return code = 0 

(Remarks: The test program 

will generate 2 sequencer 
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sequencers” from the Test Menu. 

 Enter ‘Q’ to quit the “read and advance 

eventcount” test 

 Enter ‘0’ when prompted to enter the 

sequencer to ticket 

 Press “Alt-Esc” to generate a SAK, and 

then change the partition focus back to 

the audit application  

 Select “1 – Retrieve records”. Enter “4” 

when asked to enter the number of 

records to retrieve. 

events. The other 2 audit 

records are generated by the 

SAK events) 

 Select “2 – View records” to display and 

manually inspect the audit records 

Content of the audit record for 

the sequencer event  

A-6 Select “4 – Query number of records in the 

Audit Buffer” 

Number of records in the buffer 

= 0 

Return code = 0 

  Press “Alt-Esc” to generate a SAK, and 

then change the partition focus to “3 – 

Test Application”.  

 Enter ‘Q’ to quit the sequencer test 

 Enter ‘Y’ to continue with the “Await 

on Eventcount” test. 

 Press “Alt-Esc” to generate a SAK, and 

then change the partition focus back to 

the audit application  

 Select “1 – Retrieve records”. Enter “3” 

Number of records read = 3 

Return code = 0 

(Remarks: 2 of the audit records 

are generated by the SAK 

events) 
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when asked to enter the number of 

records to retrieve. 

 Select “2 – View records” to display and 

manually inspect the audit records 

Content of the audit record for 

the await on eventcount event 

A-7 Select “4 – Query number of records in the 

Audit Buffer” 

Number of records in the buffer 

= 0 

Return code = 0 

  Press “Alt-Esc” to generate a SAK, and 

then change the partition focus to “4 – 

Test Support”.  

 Enter ‘0’ when prompted for the 

eventcount to advance. 

 Press “Alt-Esc” to generate a SAK, and 

then change the partition focus back to 

the audit application  

 Select “1 – Retrieve records”. Enter “3” 

when asked to enter the number of 

records to retrieve. 

Number of records read = 3 

Return code = 0 

(Remarks: 2 of the audit records 

are generated by the SAK 

events) 

 Select “2 – View records” to display and 

manually inspect the audit records 

Content of the audit record for 

the process woke up event 

Shut down the Test Virtual Machine. To perform tests to verify that audit records 

are generated for failed events, reconfigure the configuration vector by performing the 

following steps: 

1. Insert the following lines in all_apps.pl0 

a. EVENTCOUNT = {"Event  0",  3,  RW, RW, NA, NA, NA }; 

b. SEQUENCER = {"Seq  0",  3,  RW, RW, NA, NA, NA }; 
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2. Create the configuration vector using the command line “vector -0 all_aps.pl0 

-1 five_part.pl1 -2 five_part.pl2 -3 all_apps.pl3 –o all_apps” 

3. Compile the code without the debug option.  

4. Boot the Test Virtual Machine and navigate to the audit test application main 

menu. Perform the steps shown in the “Menu Selection / Action” column of 

Table 39. 

Table 39.   Results of Acceptance Testing (Failed Events) 

Test ID Menu Selection / Action Expected Results Summary 

A-8 Select “1 – Retrieve records”. Enter “6” 

when asked to enter the number of records 

to retrieve. The buffer provided by the test 

application is not big enough to hold all 8 

records. Repeat this step several times  

until number of records read becomes 0. 

 

All the records are read. 

 Select “2 – View records” 8 times to 

display all the audit records. 

Select “4 – Query number of records in the 

Audit Buffer” 

 

Number of records in the buffer 

= 0 

Return code = 0 

  Press “Alt-Esc” to generate a SAK, and 

then change the partition focus to “3 – 

Test Application”.  

 Select “A – Test eventcounts and 

sequencers” from the Test Menu. 

 Enter ‘Q’ to quit the “read and advance 

Number of records read = 3 

Return code = 0 

(Remarks: 2 of the audit records 

are generated by the SAK 

events) 
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eventcount” test 

 Enter ‘0’ when prompted to enter the 

sequencer to ticket 

 Press “Alt-Esc” to generate a SAK, and 

then change the partition focus back to 

the audit application  

 Select “1 – Retrieve records”. Enter “3” 

when asked to enter the number of 

records to retrieve. 

 Select “2 – View records” to display and 

manually inspect the audit records 

Content of the audit record for 

the sequencer event 

(Event modifier = 0x1) 

A-9 Select “4 – Query number of records in the 

Audit Buffer” 

Number of records in the buffer 

= 0 

Return code = 0 

  Press “Alt-Esc” to generate a SAK, and 

then change the partition focus to “3 – 

Test Application”.  

 Enter ‘Q’ to quit the sequencer test 

 Enter ‘Y’ to continue with the “Await 

on Eventcount” test. 

 Press “Alt-Esc” to generate a SAK, and 

then change the partition focus back to 

the audit application  

 Select “1 – Retrieve records”. Enter “3” 

when asked to enter the number of 

Number of records read = 3 

Return code = 0 

(Remarks: 2 of the audit records 

are generated by the SAK 

events) 
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records to retrieve. 

 Select “2 – View records” to display and 

manually inspect the audit records 

Content of the audit record for 

the await on eventcount event 

(Event modifier = 0x1) 

 

Shut down the Test Virtual Machine. To perform testing of the Audit Buffer,  

modify the size of the Audit Buffer by performing the following steps: 

1. Modify the value of AUDIT_BUFF_SIZE constant in lpsk_audit.h to 512.  

2. Recompile the code without the debug option.  

3. Boot the Test Virtual Machine and navigate to the audit test application main 

menu. Perform the steps shown in the “Menu Selection / Action” column in 

Table 40. 

Table 40.   Results of Acceptance Testing (Audit Buffer) 

Test ID Menu Selection / Action Expected Results Summary 

A-10 Select “4 – Query number of records in the 

Audit Buffer” 

 

Number of records in the buffer 

= 8 

Return code = 0 

  Press “Alt-Esc” to generate a SAK. 

Repeat 10 times to generate 11 SAK 

audit records. 

 Change the partition focus back to the 

audit application. 

 Select “4 – Query number of records in 

the Audit Buffer” 

 

Number of records in the buffer 

= 18 

Return code = 0 
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 Select “5 – Query number of overwritten 

records” 

Number of records overwritten 

= 1 

Return code = 0 

 

Shut down the Test Virtual Machine and disable the audit by performing the 

following steps: 

1. Modify the value of AUDIT_ENABLED constant in lpsk_audit.h to FALSE.  

2. Recompile the code without the debug option.  

3. Boot up the Test Virtual Machine and navigate to the audit test application 

main menu. Perform the steps shown in the “Menu Selection / Action” 

column in Table 41. 

Table 41.   Results of Acceptance Testing when Audit is Disabled 

Test ID Menu Selection / Action Expected Results Summary 

B-1 Select “4 – Query number of records in the 

Audit Buffer” 

 

Number of records in the buffer 

= 0 

Return code = 2 

 Select “1 – Retrieve records”. Enter “1” 

when asked to enter the number of records 

to retrieve.  

 

Number of records in the buffer 

= 0 

Return code = 2 

 Perform the tasks described in A-4 to A9. 

Select “4 – Query number of records in the 

Audit Buffer” 

Number of records in the buffer 

= 0 

Return code = 2 
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